Skip to main content

Tobias Ekholm: Contact and symplectic dga's

Time: Thu 2015-10-08 14.00 - 15.00

Location: Institut Mittag-Leffler, Auravägen 17, Djursholm

Participating: Tobias Ekholm, Uppsala University

Export to calendar

We define Hamiltonian simplex differential graded algebras (DGA) with differentials that deform the high energy symplectic homology differential and wrapped Floer homology differential in the cases of closed and open strings in a Weinstein manifold, respectively. The order m term in the differential is induced by varying natural degree m co-products over an (m-1)-simplex, where the operations near the boundary of the simplex are trivial. We show that the Hamiltonian simplex DGA is quasi-isomorphic to the (non-equivariant) contact homology algebra and to the Legendrian homology algebra of the ideal boundary in the closed and open string cases, respectively.