# Svante Linusson: Limit shape of shifted staircase SYT

**Time: **
Tue 2020-01-28 10.30 - 11.20

**Lecturer: **
Svante Linusson, KTH Royal Institute of Technology

**Location: **
Institut Mittag-Leffler, Seminar Hall Kuskvillan

### Abstract

A shifted tableau of staircase shape has row lengths \(n,n-1,\ldots,2,1\) adjusted on the right side and numbers increasing along rows and columns. Let the number in a box represent the height of a point above that box, then we have proved that the points for a uniformly chosen random shifted staircase SYT in the limit converge to a certain surface in three dimensions. I will present this result and also how this implies, via properties of the Edelman-Greene bijection, results about random 132-avoiding sorting networks, including limit shapes for trajectories and intermediate permutations.

(Based on joint work with Samu Potka and Robin Sulzgruber.)