Klaus Kröncke: Optimal coordinates for Ricci-flat conifolds
Time: Thu 2024-02-01 10.00 - 11.00
Location: 3418
Language: english
Participating: Klaus Kröncke, KTH
We compute the indicial roots of the Lichnerowicz Laplacian on Ricci-flat cones and give a detailed description of the corresponding radially homogeneous tensor fields in its kernel. For a Ricci-flat conifold \((M,g)\) which may have asymptotically conical as well as conically singular ends, we compute at each end a lower bound for the order with which the metric converges to the tangent cone. As a special subcase of our result, we show that any Ricci-flat ALE manifold \((M^n,g)\) is of order n and thereby close a small gap in a paper by Cheeger and Tian. This is joint work with Áron Szabó