Till innehåll på sidan

Walter Berge: Constructing a Groebner basis for a bent function without Buchbergers algorithm

Tid: Fr 2021-04-09 kl 09.00 - 10.00

Plats: Meeting ID: 634 8068 3484

Föreläsare: Walter Berge

Abstract

In this paper we study a particular bent function (as defined by Rothaus in 1975) from a Groebner basis perspective. By generating an ideal from the chosen bent function in conjunction with a set of polynomials limiting the variety to Z_2^n we construct Groebner bases algorithmically in various dimensions and analyze them to find a pattern. From this pattern we construct a set of polynomials which we then prove to be a Groebner basis for this ideal. It is possible that other bent functions have Groebner bases that can be described in this way which may lead toward a general classification of bent functions.

Zoom Notes: Password required, contact arias@math.su.se

Innehållsansvarig:webmaster@math.kth.se
Tillhör: Institutionen för matematik
Senast ändrad: 2021-04-01