Till innehåll på sidan

Tristan Freiberg: On the average exponent of elliptic curves modulo $p$

Tid: Ti 2012-05-15 kl 15.00

Plats: Room 3721, Lindstedtsvägen 25, 7th floor, Department of Mathematics, KTH

Exportera till kalender

 Given an elliptic curve $E$ defined over $\mathbb{Q}$ and a prime $p$ of
  good reduction, let $\tilde{E}(\mathbb{F}_p)$ denote the group of $\mathbb{F}_p$-points 
  of the reduction of $E$ modulo $p$, and let $e_p$ denote the 
  exponent of this group.  Assuming a certain form of the 
  Generalized Riemann Hypothesis, we study the average of 
  $e_p$ as $p \le X$ ranges over primes of good reduction, and 
  find that the average exponent essentially equals 
  $p\cdot c_E$, where the constant $c_E \in (0,1)$ depends on 
  $E$.