Till innehåll på sidan

Matthew Stamps: Betti diagrams of graphs

Matthew Stamps, Aalto University

Tid: On 2012-05-02 kl 13.15 - 15.00

Plats: Room 306, Kräftriket, SU

Ämnesområde: Algebra and Geometry Seminar

Exportera till kalender

The emergence of Boij-Söderberg theory has given rise to new connections between combinatorics and commutative algebra. In a recent paper, Herzog, Sharifan, and Varbaro show that every Betti diagram of an ideal with a $k$-linear minimal resolution in a polynomial ring with $n$ variables arises from the Stanley-Reisner ideal of a simplicial complex on $n$ vertices.  In this talk, we will investigate further the case of $k=2$ and, in particular, give a bijective correspondence between the non-complete threshold graphs on $n$ vertices and the Betti diagrams of ideals with $2$ linear minimal resolutions over a polynomial ring with $n$ variables.  The key observation is that the Betti diagrams of these ideals are the lattice points of a reflexive polytope which can be constructed recursively from non-complete threshold graphs.  This is joint work with Alexander Engström.
Tillhör: Stockholms Matematikcentrum
Senast ändrad: 2016-09-07