Till innehåll på sidan

Ibrahim Nonkane: Decomposition of modules over the Weyl algebra

Tid: Ti 2013-04-16 kl 13.00

Plats: Room 14, building 5, Kräftriket, Department of mathematics, Stockholm university

Ämnesområde: Mathematics

Licentiand: Ibrahim Nonkane

Granskare: Ralf Fröberg, Stockholm university

Huvudhandledare: Rikard Bøgvad, Stockholm university

Exportera till kalender

This thesis is concerned with various results using the Weyl algebra Aₙ(K).

In the first paper, we use properties of certain Aₙ(K)-modules to construct Noetherian operators attached to a primary ideal J in the polynomial ring K[x₁,...,xₙ], where K is a field of characteristic 0.

In the second paper, we consider the direct image of an irreducible Aₙ(K)-module under a finite map π: X = spec B → Y = spec A. We study the decomposition in the case of the invariants of the symmetric group, B = ℂ[x₁,...,xₙ] ⊃ A = ℂ[x₁,...,xₙ]Sₙ . We first describe the generators of the simple components of π₊(B) and give their multiplicities. Secondly, we describe another basis of each irreducible module after localization. Finally using Brauer's characterization of characters we give a partial generalization to arbitrary finite extensions.