Skip to main content

Ghaith Hiary: Detecting square-free numbers via the explicit formula.

Ghaith Hiary, Britsol University

Time: Thu 2012-10-04 15.15

Location: Room 3721, Mathematics Department, KTH.

Export to calendar

Let d  = m^2 n, where n is square-free, and where m and n are unknown to us. 
A method to obtain a lower bound on n without attempting to factor d is presented. 
If d happens to be square-free, then the method might yield a sufficiently good lower 
bound on n so that the square-freeness of d can then be certified fast -- in particular, 
faster than could have been done had we immediately applied one of the other known 
methods that also can produce partial information about n (such as the Pollard-Strassen 
algorithm). The running time of the method is heuristically sub-exponential in the lower 
bound over a relatively wide initial range, and perhaps further. The method is based on 
the explicit formula for the Dirichlet L-function associated with a suitably chosen real 
character, and assuming the generalized Riemann hypothesis for that L-function. 
Several optimizations of the method will be discussed. Examples of computations 

using the method will be given. This is joint work 

with Andy Booker and Jon Keating.