A semilinear Schrödinger equation with symmetric magnetic potential Andrzej Szulkin

Abstract: We consider the magnetic Schrödinger equation

$$
-(\nabla+i A(x))^{2} u=|u|^{p-2} u, \quad 2<p \leq 2^{*}:=2 N /(N-2)(N \geq 3)
$$

where $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$. The operator $\nabla+i A(x)$ appears in quantum mechanics of particles in an external magnetic field whose source is the magnetic potential A. We mainly focus our attention on the case $p=2^{*}$ which is the critical exponent for the embedding of the Sobolev space $H^{1}\left(\mathbb{R}^{N}\right)$ into $L^{p}\left(\mathbb{R}^{N}\right)$. We discuss the existence of nontrivial solutions $(u \neq 0)$ under the assumption that A is equivariant with respect to an action of a closed group $G \subset O(N)$ and we point out some connections to the equation

$$
-\Delta u=|u|^{2^{*}-2} u, \quad x \in \mathbb{R}^{N}
$$

related to the Yamabe problem. We also show that if G is "too large" ($G=$ $S O(N)$), then the magnetic Schrödinger equation is equivalent to the nonmagnetic one (the magnetic potential can be gauged away).

