
Abstract for the lecture on March 8 2017

Contents from Torsten Carleman’s book Sur les equations integrales singulier a
noyaux réell et symétrique will be exposed. The major results deal with spectral
resolutions of unbounded self-adjoint operators on complex Hilbert spaces. I will
describe some applications to specific problems such as PDE-equations and Stieltjes’
moment problem.
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An example
.

Following page 174-185 in Carleman’s cited book we announce a result about prop-
agation of sound which amounts to find a function u = u(x, y, z, t) where t is a
positive time variable and (x, y, z) are points in R3 which stay outside a bounded
domain Ω whose boundary S is of class C1. Put U = R3 \ Ω and consider the
family F of C2- functions f(x, y, z) in U such that f and the Laplacian ∆(f) both
belong to L2(U) and the normal derivative

∂f

∂n
= 0

along S. Now one seeks a function u(x, y, z, t) defined in U × R+ satisfying the
wave equation

∂2u

∂t2
= ∆(u)

and the following three conditions

(1)
∂u

∂n
(p) = 0 p = (x, y, z) ∈ S& t > 0

(2) u(p, 0) = f0(p) p ∈ U

(3)
∂u

∂t
(p, 0) = f1(p) p ∈ U

Apart from existence and uniqueness of a solution to this boundary value problem
for every pair f0, f1 one may also ask if the motion tends to zero as t→ +∞ inside
every bounded part of U . In other words if

(*) lim
t→+∞

|∂u
∂x

(p, t)|+ |∂u
∂y

(p, t) + |∂u
∂y

(p, t)| = 0

when p stays in a bounded subset of U .

The proof of these results rely upon a study of the Laplace operator ∆ acting on
the space F . Here ∆ is only densely defined on the Hilbert space L2(U) and in
addition unbounded. So one must employ the general theory created in Carleman’s
work from 1923. A crucial step towards the existence of a solution to the boundary
value problem is that when f ∈ F then the Dirichlet integral∫∫

U

(∂2f/∂x2 + ∂2f/∂y2 + ∂2f/∂z2) dxdydz < +∞

Using this Carleman proved that −∆ is a densely defined self-adjoint operator on F
whose spectrum is confined to R+. The requested solution to the boundary value
problem for a given pair f0, f1 is given by

u(p) =∫ ∞
0

cos
√
λ · t) dλ

∫
U

Θ(p, q, λ)(f0)(q) dq+

∫ ∞
0

sin
√
λ · t)√
λ

∫
U

Θ(p, q, λ)(f1)(q) dq

where Θ(p, q, λ) is the spectral function attached to the self-adjoint operator −∆.

Finally the proof of (*) employs spherical functions in R3 which reduces the proof
of the absolute continuity of the spectral function Θ to a result concerned with a
certain second order ODE on the real line which is presented on page 184-185 in
Carleman’s cited book.
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Introduction.
Hyperbolic PDE-equations.

Introduction. We shall study boundary value problems for linear symmetric hy-
perbolic systems. The proof of our main result in Theorem 0.1 teaches the use-
fulness of regarding densely defined unbounded linear operators on Hilbert spaces.
The proof of Theorem 0.1 involves quite technical steps. For the reader’s conve-
nience we therefore include a self-contained proof in the restricted case for systems
in two variables and a single scalar function. Here the Hilbert space methods are
transparent, and at the same time the methods which are used in this restricted
situation are crucial, i.e. the general case is verbatim the same except for various
technical steps. Let us first recall some background about hyperbolic equations.

A classic result due to Hadamard gives a vanishing principle for well-posed boundary
value problems. With coordinates (x, s) = (x1, . . . , xn, s) in Rn+1 we consider a
differential operator of the form

Q(x, s, ∂x, ∂s) = ∂ps +

p−1∑
ν=0

Pν(x, s, ∂x) · ∂νs

where {Pν(x, s, ∂x) are differential operators which are independent of ∂s and co-
efficients in C∞(Rn+1) which in general are complex-valued. The Cauchy problem
is well posed in Hadamard’s sense if there to every f(x) ∈ C∞(Rn) exists a unique
C∞-function g(x, s) in the half-space {s ≥ 0} such that Q(g)(x, s) = 0 when s > 0
and on s = 0 one has

∂νs (g)(x, 0) = 0 : 0 ≤ ν ≤ p− 1 : ∂ps (g)(x, 0) = f(x)

Under the hypothesis that Cauchy’s problem is well-posed one has:

Hadamard’s Theorem. If K is a compact subset in Rn+1 there exists a compact
set K in the x-space such that thre unique solution f whose Cauchy data on s = 0
vanishes on k must vanish on K.

This result follows easily from Baire’s category theorem. The reader may consult
[D-S: Volume 2: page 1649-1652] for details.

Conditions for a PDE-operator to be hyperbolic is an extensive subject. The reader
may consult the text-book by Petrowsky for examples of hyperbolic, elliptic and
parabolic equations.

An ill-posed equation. Let n = 1 and consider the 2× 2-matrices

A1(x, s) =

(
−e−x 0

0 1

)
: B(x, s) =

(
0 1
0 0

)
:

One seeks pairs of functions (f1(x, s), f2(x, s) which satisfy the first order system:

∂f1

∂s
= −e−x · ∂f1

∂x
+ f2 :

∂f2

∂s
=
∂f2

∂x

For any function C∞-function h of a single variable we see that

f1(x, s) = h(ex − s) : f2 = 0

solves the system above and here f1(x, 0) = h(x). Consider the singleton set {0, 1}
in R2. Then f(A) = 1 for all h-functions such that h(0) = 0. Fix a test-function
φ(t) on the real t-line where φ(0) = 1 while φ(t) = 0 if |t| ≥ 1/2. For every positive
integer N we take h(t) = φ(Nt). If the Cauchy problem is well posed we get the
unique solution with f1 = h(s− ex) and now

f1(x, 0) = φ(eNx)
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Since the support of φ is contained in [−1/2, 1/2] we see that f1(x, 0) 6= 0 entails
that

eNx ≤ 1/2 =⇒ x ≤ −N · log 2

Since N can be arbitrary large this violates Hadamard’s vanishing principle and
hence the Cauchy problem for this system is not well-posed.

The wave operator.

With two real variables we consider the PDE-operator

P =
∂2

∂x2
1

− ∂2

∂x2
2

To each pair of functions g(x1), h(x1) one seeks f(x1, x2) such that P (f) = 0 and
Cauchy’s boundary value conditions:

(i) f(x1, 0) = g(x1) :
∂f

∂x2
(x1, 0) = h(x1)

This boundary value problem corresponds to a first order system where one seeks
a pair f1(x1, x2) and f2(x1, x2) such that

(ii)
∂f1

∂x1
= − ∂f1

∂x2
+ f2 :

∂f2

∂x1
=
∂f2

∂x2

with boundary values

(iii) f1(x1, 0) = g(x1) : f2(x1, 0) = g′(x1) + h(x1)

Exercise. Show that if f solves (i) then the boundary value system is solved by
the pair

f1 = f : f2 =
∂f

∂x1
+

∂f

∂x2

Show also that if f1, f2 solves the system then f = f1 solves the original equation.
Next, consider the matrices

A =

(
−1 0
0 1

)
: B =

(
0 0
1 0

)
Then the system can be written in matrix form as

∂

∂x1

(
f1

f2

)
= A

∂

∂x2

(
f1

f2

)
+B

(
f1

f2

)
This clarifies that the orginal equation is a first order symmetric system to be
dsecribed in § xx,

Higher order systems. Consider systems with n+ 1 many variables x1, . . . , xn, s
where the variable s is distinguished. In a first order scalar system one seeks a
function f(x, s) such that

∂f

∂s
=

j=n∑
j=1

aj(x, s) ·
∂f

∂xj
+ b(x, s)

satisfying the boundary condition

f(x, 0) = g(x)

where the g function is given in the n-dimensional x-space. In a vector-valued
system of order m ≥ 2 the a-functions are replaced by m ×m-matrices and b by
some m×m-matrix. Here one seeks a vector-valued function f = (f1, . . . , fm) such
that

(*)
∂

∂s

 f1

...
fm

 =

j=n∑
j=1

Aj(x, s) ·
∂

∂xj

 f1

...
fm

+B(x, s)

 f1

...
fm
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The boundary conditions are expressed by an m-tuple of functions {gν(x)} such
that fν(x, 0) = gν(x) hold for each ν. The A-matrices and the B-matrix are in
general complex valued. A famous example is:

Maxwell’s equations of electrodynamics. Let n = m = 3 where {Aν} are
constant 3× 3-matrices

A1 =

0 0 0
0 0 −i
0 i 0

 : A2 =

 0 0 i
0 0 0
−i 0 0

 : A3 =

0 −i 0
i 0 0
0 0 0


Moreover B = 0 and one seeks a vector-valued function f1, f2, f3 which satisfies (*)
and boundary value conditions fν(x, 0) = gν(x)

The symmetric case.

The system (*) is symmetric if the matrices {Aν(x, s)} are Hermitian for each
1 ≤ ν ≤ n. No special condition is imposed on B, i.e. it can be an arbitrary
complex m × m-matrix. Notice that the A-matrices in Maxwell’s equations are
hermitian. The following result is due to Friedrichs:

0.1 Theorem. Assume that the A-matrices are hermitian and that the matrix
elements of A1, . . . , An and B are bounded functions in Rn+1. Then Cauchy’s
boundary value problem has a unique C∞solution f = (f1, . . . , fm) for every m
tuple g = (g1, . . . , gm) of C∞-functions in the n-dimensional x-space.

Remark. The example after Hadamard’s result above shows that this boundedness
is needed in order that the Cauchy problem is well-posed.

0.2 On the uniqueness. Let us illustrate why the condition that the A-matrices
are hermitian gives a certain vanishing principle. Let Ω be a bounded open set
in the n-dimensional x-space and −s∗ < s < s∗ is some open s-interval. Let
{Aj(x, s)} be Hermitian m×m-matrices whose elements as well as their first order
partial derivatives are bounded C∞-functions in Ω × (−s∗, s∗). Similarly, assume
that B(x, s) is an m×m-matrix whose elements are bounded C∞−-functions in Ω.
Let f = (f1, . . . , fm) be a vector-valued solution to the system (*) where

(0.2.1) f(x, 0) = 0 : x ∈ Ω

and assume there is a compact subset K of Ω and f = 0 in (Ω \ K) × (−s∗, s∗).
Then (0.2.1) entails that f = 0 in Ω × (−s∗, s∗). To prove this we introduce the
function

J(s) =

∫
Ω

|f(x, s)|2 dx

where |f |2 =
∑

fν · f̄ν . Taking the derivative with respect to s we get

(i)
dJ

ds
= 2 ·Re

jm∑
j=1

∫
∂s(fν) · f̄ν dx

Since f satisfies (*) we have

jm∑
j=1

∫
∂s(fν) · f̄ν =

j=n∑
j=1

〈Aj(
∂f

∂xj
), f〉+ 〈B(f), f〉

Since fν(x, s) vanish when x ∈ Ω \K Stokes theorem gives

(ii) 0 =

∫
∂xj

(〈Aj(f), f〉) dx : 1 ≤ j ≤ n

Rules for differentiation identifies for each j the integrand with

〈∂Aj
∂xj

(f), f〉+ 〈Aj(∂xj
(f), f〉+ 〈Aj(f), ∂xj

(f)〉
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Since Aj is hermitian we have

(iii) Re 〈Aj(∂xj
(f), f〉 = Re 〈Aj(f), ∂xj

(f)〉

Hence (ii) and (iii) give

Re

∫
〈Aj(

∂f

∂xj
), f〉 dx = −1

2

∫
〈∂Aj
∂xj

(f), f〉 dx

Introduce the matrix-valued function

div(A) =

j=n∑
j=1

∂Aj
∂xj

From the above we get the equation

(iv)
dJ

ds
= Re

∫ [
−1

2
〈div(A)(f), f〉+ 〈B(f), f〉

]
dx

By assumption the elements of the matrices {Aj} and of B as well as {∂Aj

∂xj
}. are

bounded C∞-functions. Hence (iv) and the Cauchy-Schwarz inequality gives a
constant C such that the absolute value in the right hand side in (iv) is estimated
above by

C ·
∫
|f(x, s)|2 dx : − s∗ ≤ s < s∗

It follows that

|dJ
ds
| ≤ C · J(s) : 0 ≤ s ≤ s∗

At the same time (i) means that J(0) = 0. Hence Picard’s uniquneness theorem to
be exposed in § XX implies that if J(s) = 0 when −s∗ < s < s∗, i.e.

(0.3.1) J(x, s) = 0 : (x, s) ∈ {|x| ≤ r} × [0, s∗]

So we have ∫
Ω

|f(x, s)|2 dx = 0

and {fν} are continuous functions they vanish identically in Ω × (−s∗, s∗) as re-
quested.

0.3 A semi-global uniqueness result. Let {Aj(x, s)} be Hermitian matrices
defined in the whole of Rn+1 whose elements are bounded C∞-functions. Similarly
B(x, s) is defined in the whole of Rn+1.

0.3.1 Proposition. There exists a positive number ρ which only depends on the
matrices above such that if R > 0 and a vector valued C∞-function f(x, s) is defined
in the ball {|x|2 + s2 < R2} where it is a solution to (*) and satisfies

f(x, 0) = 0 : |x| < R

Then it follows that

f(x, s) = 0 : x2 + s2 < ρ ·R2

Proof. Choose a test-function ψ(x) in Rn such that ψ = 1 when |x| ≤ 1 and
vanishes when |x| > 3/2 while the values stay in [0, 1]. Set

(i) µ = max
1≤j≤m

sup
(x,s)

||Aj(x, s)||
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where the supremum is taken over all (x, s) in Rn+1 and we have taken the Hibert-
Schmidt norms of the A-matrices. With ε > 0 we set φ(x) = ψ(ε · x) and construct
the following m×m-matrices

H(x, s) =

j=n∑
j=1

∂φ

∂xj
(x) ·Aj(x, s)

Âj(x, s) = φ(x) ·Aj(x, φ(x)s) : B̂(x, s) = φ(x) ·B(x, φ(x)s)

Put
F (x, s) = f(x, φ(x)s)

Since 0 ≤ φ(x) ≤ 1 hold for all x it follows that F is defined in {|x|2 + s2 < R2}
and the construction of φ gives

(ii) F (x, s) = f(x, s) : |x| < ε−1

Rules for differentiation show that F satisfies the system

(E −H(x, s))∂s(F ) =

j=n∑
j=1

Âj(x, s)∂xj (F ) + B̂(x, s)F : x2 + s2 < R2

where E is the identity operator.

A choice of ε. The partial derivatives of the test-function ψ are bounded by some
constant C and we set

ε∗ =
1

2n · Cµ
It follows that

| ∂φ
∂xj
| = ε · | ∂ψ

∂xj
| ≤ 1

2nµ

By (i) this entails that

(iii) sup
(x,s)

||H(x, s]| ≤ 1

2

Next, the support of φ is contained in the ball {|x| ≤ 3
2ε∗ so the vanishing in (xx)

entails that F (x, s) = 0 when
3

2ε∗
≤ |x| < R

By the condition (xx) R ≥ R∗ entails that

3

2ε∗
= 3nCµ = R∗/2 ≤ R/2

So R ≥ R∗ implies that

(v) Fε(x, s) = 0 :
R

2
≤ |x| <

√
R2 − s2

Now (iv) implies that the hermitian matrix E −H(x, s) is invertible and by (iii) F
satisfies system as in (0.2). The vanishing in (v) therefore implies that Fε(x, s) = 0
hold when x2 + s2 < R2.

FINISH
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§ 1: Symmetric hyperbolic systems.

The main result in this section appears in Theorem 1.xx. Before it can be announced
we need several preliminaries. We will study periodic functions. Let n be a positive
integer and consider the (n + 1)-dimensional torus Tn+1 with variables (x, s) =
(x1, . . . , xn, s). Denote by C∞(Tn+1) the space of complex-valued C∞-functions
which are 2π-periodic in all the variables. Passing to the L2-norm the closure of
these functions give the complex Hilbert space L2(Tn+1) whose vectors are complex-
valued functions f(x, s) which are square integrable on the (n + 1)-dimensional
2π-periodic torus. Next, to each multi-index α = (α1, . . . , αn+1) one associates the
differential operator

∂α = ∂α1
x1
· · · ∂αn

xn
· ∂αn+1
s

If k is a positive integer an inner product is defined on C∞(Tn+1) by

(1.1) 〈f, g〉(k) =
∑
|α|≤k

∫
∂α(f) · ∂α(g) dxds

Passing to the closure we obtain a Hibert space denoted by H(k) whose elements
are L2-functions g(x, s) such that the distribution derivatives ∂α(g) are square
integrable when |α| ≤ k. From § XX we recall:

The Fourier-Sobolev Lemma. If k ≥ xx every g ∈ H(k) is a periodic function
of class C1 at least on Tn+1.

More generally, if m ≥ 2 we consider vector-valued functions f = (f1, . . . , fm) and
get the Hilbert space H(k)[m] whose vectors are m-tuples of functions in H(k). With
f = (f1, . . . , fm) and g = (g1, . . . , gm) the inner product is defined as in (1,1):

(1.2) 〈f, g〉(k) =

ν=m∑
ν=1

∑
|α|≤k

∫
∂α(fν) · ∂α(gν) dxds

With m ≥ 1 we consider a matrix-valued functions {Aj(x, s) . . . An(x, s)} where
each Aj(x, s) is an m×m-matrix whose elements are periodic complex-valued C∞-
functions on Tn+1. Let B(x, s) be another matrix-valued functions whose elements
also are periodic and of class C∞. Set

(1.3) P (x, s, ∂x, ∂s) = Em · ∂s −
j=n∑
j=1

Aj(x, s) · ∂xj +B(x, s)

This differential operator acts on vector-valued functions f . Identifying the space
of vector-valued and periodic C∞-functions with a subspace of H(k)[m] one has the
linear map

P : f → P (f)

from C∞[m] into H(k)[m]. Keeping k and m fixed we denote this linear map by
T0. It means that T0 is densely defined linear operator on H [k)[m] whose domain
of definition D(T0) = C∞[ m]. We have also the densely defined linear operator T1

where

D(T1) = {f ∈ H(k)[m] : P (f) ∈ H [k)[m]}
By the general result in § XX the graph of T1 taken in the product H(k)[m]×H(k)[m]
is closed. Next, since T0 is densely defined there exists the adjoint operator T ∗0 . By
definition D(T ∗0 ) consists of vectors g ∈ H(k)[m] for which there exists a constant
C(g) such that

|〈T0(f), g〉| ≤ C(g)|̇|f ||k : f ∈ D(T0)

and for such g-vectors we get a unique vector T ∗0 (g) such that

〈T0(f), g〉 = 〈f, T ∗0 (g)〉
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1.4 The case when {Aj} are hermitian. An m×m-matrix A(x, s) = {aν,µ(x, s)}
whose elements are periodic C∞-functions is hermitian if

aµ,ν(x, s) = aν,µ(x, s)

hold for all pairs 1 ≤ ν, µ ≤ m.

1.5 Proposition. If A1, . . . , An are hermitian it follows that D(T ∗0 ) = D(T1) and
there exists a bounded and self-adjoint linear operator B on H(k)[m] such that

(*) T ∗0 + T1 = B

Before we enter the proof we need some constructions. Repeated use of Stokes
Theorem gives the equality below for every pair of functions f, g in C∞(Tn+1) and
every multi-index α:

(−1)|α| ·
∫

∂2α(f) · g dxds =

∫
∂α(f) · ∂α(g) dxds

More generally, let Q = Q(x, s, ∂x, ∂s) be a differential operator. With Q given as

Q =
∑

qα(x, s) · ∂α

where qα ∈ C∞(Tn+1) one gets the differential operator

Q∗ =
∑

(−1)α · ∂α ◦ qα(x, s)

where ∂α ◦ qα(x, s) is the product taken in the ring of differential operators with
{qα(x, s)} regarded as zero-order differential operators. Stokes theorem gives

(1.6)

∫
Q(f) · ḡ dxds =

∫
f ·Q∗(ḡ) dxds

Let us write out
Q∗ =

∑
rα(x, s) · ∂α

We take the complex conjugates of the r-functions and put

Q∗ =
∑

r̄α(x, s) · ∂α

Using the hermitian inner product on L2(Tn+1) we can express (1.6) by the equation

(1.7) 〈Q(f), g〉 = 〈f,Q∗(g)〉

1.8 The Γ-operator. Let us introduce the differential operator

Γ =
∑
|α|≤k

(−1)|α| · ∂2α

If m ≥ 2 we denote by Γm the operator given by the diagonal m×-matrix where
whose diagonal elements are Γ. Stokes theorem entails that if f and g is a pair of
vector-valued functions in C∞(Tn+1) then

(1.9) 〈f, g〉(k) =

∫
Γm(f) · g dxds

1.10 Exercise. Both sides in (1.9 ) are defined under the relaxed condition that
g ∈ H(k)[m] while f ∈ C∞[m]. Show by continuity that (1.9) remains valid for
such pairs.

Next, in the algebra of m ×m-matrices whose elements are differential operators
we consider the product Γm · P .
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Exercise. Show that when P is as in (1.3) where {Aj} are hermitian then there
exists an m×m-matrix Q whose elements are differential operators of order ≤ 2k
such that the following hold in the algebra above:

(1.11) Γm ◦ P + P ∗ ◦ Γm = Q

Now (xx) and (xx) give the equation

〈T0(f), g〉(k) =

∫
Q(f) · ḡ dxds−

∫
P ∗ ◦ Γm(f) · ḡ dxds

Apply (xx) to the pair of vector-valued functions Γm(f) and g and the differential
operator P ∗. Notice that the complex conjugate of the adjoint (P ∗)∗ is equal to
P and from this the reader can check form the above that the last term in (xx) is
equal to

−
∫

Γm(f) · P (g) dxds

Applying (xx) this entails that the following hold for each pair f, g in C∞(Tn+1).

〈T0(f), g〉(k) = −〈f, T0(g)〉(k) +

∫
Q(f) · ḡ dxds

Exercise. Since the differential operator Q has degree ≤ 2k the reader should
verify the existence a bounded linear operator Bk on the Hilbert space H(k)[m]
such that ∫

Q(f) · ḡ dxds = 〈Bk(f), g〉(k)

hold when f is a vector-valued C∞-function and g ∈ H(k)[m]. In particular we can
take a pair f, g in C∞ and notice that

(f, g) 7→ 〈T0(f), g〉(k) + 〈T0(g), f〉(k)

is symmtric in f and g. Form this the reader can conclude that the bounded
operator Bk is self-adjoint.
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Proof of Proposition 1.5

Assume first that g ∈ D(T0) which gives

〈T0(f), g〉(k) = 〈f, T ∗0 (g)〉(k)

Here g ∈ H(k) and regarding g as a distribution we get the vector-valued distribu-
tion P (g). Now xx hold for all vector-valued periodic C∞-functions f . From the
above the trinsgle inequality and Cauchy-Schwarz gives∣∣〈f), P (f)g〉(k)

∣∣ ≤ (||g||k + ||Bk(g)||k) · ||f ||k
Since this inequslity hold for all f in the dense subspace C∞[m] it follows that
the distribution P (f)g belongs to H(k)[m] so by the construction of T1 one has
g ∈ D(T1). Hence one has the inclusion

(i) D(T1) ⊂ D(T ∗0 )

Conveersley, if g ∈ D(T1) the absolute value in the right hand side of (xx) is
majorized by

||T1(g)||k + ||Bk(g)||k) · ||f ||k
The construction of T ∗0 entails that g ∈ D(T ∗0 and hence equality holds in (i) Finally
it is clear that this equality and (xxx) gives the operator equation

T ∗0 = −T1 + B∗k
Since we already proved that Bk is self-adjoint the proof of Proposition 1.5 is fin-
ished.

§ 2. A study of T1 .

In § 1 we constructed the densely defined and closed operator T1 on H(k)[m].
Consider some f ∈ C∞[m] and a real number λ. Now

||T1(f) + λ · f − 1

2
B∗k(f)||2(k) =

||T1(f)− 1

2
B∗k(f)||2(k)+λ2||f ||2(k)+λ·〈T1(f)− 1

2
B∗k(f), f〉(k)+λ·〈f, T1(f)− 1

2
B∗k(f)〉(k)

Since f is C∞ we have T1(f) = T0(f) and since B∗k is self-adjoint it follows that
the sum of the last two terms above becomes

(i) λ · (〈 f, T ∗0 (f)− 1

2
B∗k(f)〉(k) + 〈f, T0(f)− 1

2
B∗k(f)〉(k))

The operator equation in Proposition 1.5 gives

T0(f) + T ∗0 (f) = B∗k
which proves that (i) is zero. Hence we have proved the equality

(2.1) ||T1(f) + λ · f − 1

2
B∗k(f)||2(k) = ||T1(f)− 1

2
B∗k(f)||2(k) + λ2||f ||2(k)

Since ||T1(f) − 1
2B
∗
k(f)||(k) ≥ 0 the triangle inequality gives the inequality below

for every real number λ

(2.2) ||T1(f) + λ · f ||(k) ≥ |λ| · ||f ||(k) −
1

2
· ||B∗k(f)||(k) : f ∈ C∞per[m]

Above the real number λ can be both positive or negative and the inequality is of

interest when |λ| exceeds the operator norm of
B∗

k

2 . We have for example

(2.3) ||T1(f) + λ · f ||(k) ≥
|λ|
2
· ||||f ||(k) : |λ| ≥ ||B∗k||
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2.4 The operator T̂0. Recall that T1 is closed and extends T0 in the sense that
its graph contains that of T0. Taking the closure of Γ(T0) we get the densely

defined and closed operator T̂0 whose graph is contained in Γ(T1). When f are

C∞-functions we have T0(f) = T̂0(f) = T1(f) so (2.3) holds with T1 replaced by

T̂0. Since C∞[m] is dense in H(k)[m] the inequality below holds for every g ∈ D(T̂0):

(2.4) ||T̂0(g) + λ · g||(k) ≥
|λ|
2
· ||||g||(k) : |λ| ≥ ||B∗k||

Since T̂0 is closed it follows that the range of T̂0(g)+λ ·E is closed when |λ| ≥ ||B∗k||.

2.5 Density of the range. From now on |λ| ≥ ||B∗k||. Recall from the general

material in § XX that the adjoint of T̂0 is equal to T ∗0 . If the range of T̂0(g) + λ ·E
is not dense there exists 0 6= g ∈ H(k)[m] such that

〈T̂0(f) + λ · f, g〉(k) = 0 : f ∈ C∞[m]

Here T̂0(f) = P (f) for C∞-functions and (x) gives

|〈P (f), g〉(k)| ≤ |λ| · |〈f, g〉(k)|
It follows that g ∈ D(T ∗0 ) so (i) in gives

〈f, T ∗0 (g)〉(k) + λ · 〈f, g〉(k) = 0

This hold for all f ∈ C∞[m] and since λ is real we get hence

T ∗0 (g) + λ · g = 0

Now the operator equation in Proposition XX gives

T1(g) = λ · g + B∗k(g)

At this stage we assume that k is so large that the Sobolev inequslity entails that
H(k)[m] consists of vector-valued functions of class C1 at least which in addition
are peridic on the whole torus Tn+1. Now (xx) means that

P (g) = λ · g + B∗k(g)

From this we shall prove that g = 0 if the real number λ is sufficiently large. To
attin this we consider the function

G(s) =

∫
Tn

|g(x, s)|2 dx

It follows that
dG

ds
= 2 ·Re

∫
Tn

∂s(g)(x, s) · g(x, s) dx

Then conclude...

2.6 Conclusive results. If k ≥ xxx we have proved that there exists a positive

constant µk such that if |λ| ≥ µl then the densely defined operator λ · E − T̂0 is
surjective and at the same time one has the inequality XX. This means that there
exists the resolvent operator R(λ;T0) for such real λ. Keeping k fixed we get the

closed spectrum of T̂0 which by the general result in § xx is a closed subset of

C. Since T̂0 is an unbounded operator one cannot expect that the spectrum is
compact. Moreover in contrast to the more favourable cases for elliptic equations
the resolvent operators are in general not compact.
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§ 1.Differential inequalities.

Let M(s) be a non-negative real-valued continuous function on a closed interval
[0, s∗]. To each 0 ≤ s < s∗ we set

d+
M (s) = lim sup

∆s→0

M(s+ ∆s)−M(s)

∆s

where ∆s are positive during the limit.

1.1 Proposition. If there exists a real number B such that d+
M (s) ≤ B ·M(s)

holds in [0, s∗) then
M(s) ≤M(0) · eBs : 0 < s ≤ s∗

The proof of this result is left as an exercise to the reader. The hint is to consider
the function N(s) = M(s)e−Bs and show that d+

N (s) ≤ 0 for all s. Notice that B
is an arbitrary real number, i.e. it may also be < 0.

More generally, let k(s) be some non-decreasing continuous function with k(0) = 0.
suppose that

d+
M (s) ≤ B ·M(s) + k(s) : 0 ≤ s < s∗

Now the reader may verify that

(1.1.1) M(s) ≤M(0) · eBs +

∫ s

0

k(t) dt

Next, consider a product set � = [0, π] × [0, s∗] where 0 ≤ x ≤ π and consider
functions g(x, s) which are periodic in x, i.e.

g(0, s) = g(π, s) : 0 ≤ s ≤ s∗

A C1-function g is periodic C1-function when g and the partial derivatives ∂s(g)
and ∂x(g) are periodic in x.

1.2 Theorem. Let g be a C1-function which satisfies the PDE-equation

(*) ∂s(g)(x, s) = a · ∂x(g) + b · g
in � where a and b are x-periodic real-valued continuous functions. Set

Mg(s) = max
x
|g(x, s)| : B = max

x,s
|b(x, s)|

Then one has the inequality

Mg(s) ≤Mg(0) · eBs

Proof. Consider some 0 < s < s∗ and let ε > 0. Put

m∗(s) = {x : g(x, s) = Mg(s)}
The continuity of g entials that the function M(s) is continuous and the sets m∗(s)
are compact. If x∗ ∈ m∗(s) the periodicity of the C1-function x 7→ g(x, s) entails
that ∂x(x∗, s) = 0 and (*) gives

∂s(g)(x, s) = b(x, s)g(x, s) : x ∈ m∗(s)
Next, let ε > 0. We find an open neighborhood U of m∗(s) such that

|∂x(g)(x, s)| ≤ ε : x ∈ U
Now there exists δ > 0 such that

|g(x, s)| ≤M(s)− 2δ : x ∈ [0, π] \ U
Continuity gives some ρ > 0 such that if 0 < ∆s < ρ then the inequalities below
hold:

(i) |g(x, s+ ∆s)| ≤M(s)− δ : x ∈ [0, π] \ U : M(s+ ∆s) > M(s)− δ
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(ii) M(s+ ∆s) ≤M(s) + ε : |∂x(g)(x, s+ ∆s)| ≤ 2ε : x ∈ m∗(s)
If 0 < ∆s < ρ we see that (i) gives x ∈ m∗(s + ∆s) ⊂ U and for such x-values
Rolle’s mean-value theorem and the PDe-equation give

Mg(x, s+ ∆s)− g(x, s) = ∆s · ∂s(g(x, s+ θ ·∆s) =

(iii) ∆s ·
[
a(x, s+ ∆s) · ∂x(g)(x+ θ ·∆s) + b(x, s+ ∆s) · g(x, s+ θ ·∆s)

]
Let A be the maximum norm of |a(x, s)| taken over �. Since |g(x, s)| ≤ M(s) the
triangle inequality and (iii) give

M(s+ ∆s) ≤M(s) + ∆s[·A · 2ε+B ·M(s+ θ ·∆s)]
Since the function s 7→M(s) is continuous it follows that

lim sup
∆s→0

M(s+ ∆s)−M(s)

∆s
≤ A · 2ε+BM(s)

Above ε can be arbitrary small and hence

d+(s) ≤ B ·M(s)

Then Proposition 1.1 gives (*) in the theorem.

1.3 Higher order derivatives. Supose that g is a C2-function satisfying the PDE-
equation (*) where a and b have a continuous partial x-derivative. Set h = ∂x(g).
Since the differential operators ∂x and ∂s commute we obtain

(1.3.1) ∂s(h) = ∂x(a · h) + ∂x(b · g) = a · ∂xh+ (∂x(a) + b)h+ ∂x(b)g

L2-inequalities. Let g(x, s) be a C1-function satisfying (*) in Theorem 1.2. Set

Jg(s) =

∫ π

0

g2(x, s) dx

Diffeernation with respect to s and (*) give

dJg
ds

= 2 ·
∫ π

0

(a∂s(g) · ∂g + b · g) dx

By periodicity
∫ π

0
∂x(ag2) dx = 0 which entials that the right hand side becomes∫ π

0

(−∂x(a) + b) · g2 dx

So if K is the maximum norm of −∂x(a) + b over � it follows that

dJg
ds

(s) ≤ K · J(s)

Hence Theorem xx gives∫ π

0

g2(x, s) dx ≤ eKs ·
∫ π

0

g2(x, 0) dx : 0 < s ≤ s∗

Integration with respect to s entails that∫∫
�
g2(x, s) dxds ≤

∫ s∗

0

eKs ds ·
∫ π

0

g2(x, 0) dx

This, the L2-integral of x→ g(x, 0) majorizes both the area integral and each slice
integral when 0 < s ≤ s∗.
Higher order derivatives. Same procedure gives majorisations of these integrals
when higher order x-derivatives are inserted. Simialrly we regard PDE-equations
when g is replaced by h = ∂s(g) and so on.
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§ 2. A boundary value equation

Let a(x, s) and b(x, s) be real-valued C∞-functions on � which are periodic in x.
Consider the PDE-operator

P = ∂s − a · ∂x − b
Given a periodic C1-function f(x) on [0, π] we seek a C1-function g(x, s) in � which
satisfies P (g) = 0 and the initial condition

g(x, 0) = f(x)

From § xx we see that g is unique if it exists. There remains to prove existence.

2.1 Theorem. For every positive integer p and each periodic f ∈ Cp[0, π] there
exists a unique periodic g ∈ Cp(�) where P (g) = 0 and g(x, 0) = f(x).

The proof requires several steps and employs Hilbert space methods. To each non-
negtive integer k we get the complex Hilbert space H(k) from § xx, i.e. we complete
the space of complex-valued Ck-functions on � which are periodic with respect to
x. Sobolev’s inequality shows that if k ≥ 2 then every function in H(k) is continuous
and more generally one has the inclusion

H(k) ⊂ Ck−2(�) : k ≥ 3

Moreover, the first order PDE-operator P maps H(k+1) into H(k). From now on we
only consider k-integers which are ≥ 2. On the periodic x-interval [0, π] we get the
Hilbert spaces Hk[0, π]. The result in § xx shows that if f(x) ∈ Hk[0, π] is such that
there exists some F (x, s) ∈ H(k) such that P (F ) = 0 and F (x, 0) = f(x) then F is
unique and there exists a constant C which only depends upon the C∞-functions
a and b such that

(i) ||F ||k ≤ C · ||f ||k
where we have taken norms in H(k) Hk[0, π]. Moreover C can be chosen such that
the function f∗(x) = F (x, s∗) satisfies

||f∗||k ≤ C · ||f ||k&tagii

Let Dk(P ) be the set of all f(x) ∈ Hk[0, π] for which F (x, s) above exists.

2.2 Density Lemma. If Dk(P ) is dense in Hk[0, π] then it is equal to Hk[0, π].

Proof. Let f be in Hk[0, π] and by density we find a sequence {fn} in Dk(P ) where
||fn − f ||k → 0. By (i) we have

||Fn − Fm||k ≤ C||fn − fm||k
Hence {Fn} is a Cauchy sequence in the Hilbert space H(k) and converges to a
limit F . Since each P (Fn) = 0 it follows that P (F ) = 0 and it is clear that the
continuous boundary value function F (x, 0) = f(x) which gives f ∈ Dk(P ).

2.3 The operators Sk. To each f ∈ Dk(P ) we get F (x, π) in Hk[0, π] and set

Sk(f) = F (x, π)

So the domain of definition of Sk is Dk(P ) and (ii) gives a constant Mk such that

||Sk(f)|| ≤Mk · ||f ||k : f ∈ Dk(P )

2.4 Proposition. For each k there exists some α(k) > 0 such that the range of
the operator E − α · Sk contains all periodic C∞-functions on [0, π].

We prove Propostion 2.4 in § XXX. Let us now show that it gives the density of
Dk(P ). Namely, if Dk(P ) fails to be dense there exists a non-zero f0 ∈ Dk(P ) which
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is ⊥ to Dk(P ) and normalised so that ||f0||k = 1. In Proposition 2.4 we choose
0 < α ≤ α(k) so small that

(i) α <
1

2Mk

Since periodic C∞-functions are dense in Hk[0, π] it follows from Proposition 2.4
that there exists a sequence {hn} in Dk(P ) such that

(ii) lim
n→∞

||hn − α · Sk(hn)− f0||k → 0 =⇒

(iii) 〈f0, f0〉 = 1 = lim 〈f0, hn − α · Sk(hn)〉 = −α · lim 〈f0, Sk(hn)〉
Next, the triangle inequality and (ii) give

(iv) ||hn||k ≤ 1 + α · ||(Sk(hn)|| ≤ 1 + 1/2 · ||hn|| =⇒ ||hn||k ≤ 2

Finally, by the Cauchy-Schwarz inequality the absolute value in the right hand side
of (iii) is majorized by

α ·Mk · 2 < 1

which contradicts (iii). Hence the orthogonal complement of Dk(P ) is zero which
proves the requested density and by the above we get the following conclusive result:

2.5 Theorem. If k ≥ 2 and f(x) ∈ Hk[0, π] there exists a unique F (x, s) ∈ H(k)

such that F (x, 0) = f(x).
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§ 3. A class of inhomogeneous PDE-equations.

Before Theorem 3.1 is announced we introduce some notations. Put

� = {0 ≤ x ≤ π} × {0 ≤ s ≤ 2π}
We shall consider doubly periodic functions g(x, s) on �, i.e.

g(π, s) = g(0, s) : g(x, 0) = g(x, 2π)

If k ≥ 0 we denote by Ck(�) the space of k-times doubly-periodic continuously
differentiable functions. If g ∈ Ck(�) we set

||g||2(k) =
∑
j,ν

∫
�

∣∣ ∂j+νg
∂xj∂sν

(x, s)
∣∣2 dxds

with the double sum extended pairs j+ν ≤ k. This gives the complex Hilbert space
H(k) after a completion of Ck(�) with respect to the norm above. Recall from § xx
that every function g ∈ H(2) is automatically continuous and doubly periodic on
the closed square. More generally, if k ≥ 3 each g ∈ H(k) has continuous and doubly
periodic derivatives up to order k − 2. Next, consider a first order PDE-operator

P = ∂s − a(x, s)∂x − b(x, s)
where a and b are real-valued doubly periodic C∞-functions. It is clear that P
maps H(k) into H(k+1) for every k ≥ 2. Keeping k ≥ 2 fixed we set

Dk(P ) = {g ∈ H(k) : P (g) ∈ H(k)}

Since C∞(�) is dense in H(k) this yields for each k ≥ 2 a densely defined operator

(i) P : Dk(P )→ H(k)

In H(k) ×H(k) we get the graph

Γk = {(g, P (g) : g ∈ Dk(P )}
Since P is a differential operator the general result in § xx entails that Γk is a
closed subspace so the densely defined operator in (i) has a closed graph. Thus.
for each k ≥ 2 we have a densely defined linear operator and closed operator on
H(k) denoted by Tk. So its domain of definition D(Tk) = Dk. Next, we consider
the graph

γk = {(g, P (g) : g ∈ C∞(�)}
This is a subspace of Γk and the closure γ̄k yields the graph of another densely
defined linear operator denoted by Tk. We remark that the inclusion

D(Tk) ⊂ D(Tk)

in general is strict. Let E be the identity operator. With these notations one has

3.1 Theorem. For each integer k ≥ 2 there exists a positive real number ρ(k) such
that Tk − λ · E is surjective on H(k) for every λ > ρ(k) and its kernel is zero.

3.2 Remark. The result is remarkable since Tk is only densely defined while
Theorem 3.1 asserts that

Tk − λ · E : Dk → H(k)

is bijective. Hence the closed and densely defined operator Tk has a non-empty
resolvent set so by the general results in §§ x there exists resolvent operators Rk(λ)
defined outside the closed specrum σ(Tk) where the composed operators

(λ · E − Tk) ◦Rk(λ) = E

for all λ outside σ(Tk). The determination of these spectra is unclear and most
likely one needs extensive numerical studies to grasp these closed sets which in
addition depend upon k.
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Next,R recall from § xx that the closed and densely defined operator Tk has an
adjoint T ∗k . A crucial step in the proof of Theorem 3.1 is the following:

3.3 Proposition. One has the equality D(T ∗k ) = Dk and there exists a bounded

self-adjoint operator Bk on H(k) such that

T ∗k = −Tk +Bk

Proof of Proposition 3.3

Keeping k ≥ 2 fixed we set H = H(k). For each pair g, f in H their inner product
is defined by

〈f, g〉 =
∑ ∫

�

∂j+νf

∂xj∂sν
(x, s) · ∂

j+νg

∂xj∂sν
(x, s) dxds

where the sum is taken when j + ν ≤ k. Introduce the differential operator

Γ =
∑
j+ν≤k

(−1)j+ν · ∂2j
x · ∂2ν

s

Partial integration gives

(i) 〈f, g〉 =

∫
�
f · Γ(ḡ) dxds =

∫
�

Γ(f) · ḡ dxds : f, g ∈ C∞

Now we consider the operator P = ∂s − a · ∂x − b and get

(ii) 〈P (f), g〉 =

∫
�
P (f) · Γ(ḡ) dxds

Partial integration identifies (ii) with

(iii) −
∫
�
f ·
(
∂s − ∂x(a)− a · ∂x − b) ◦ Γ(ḡ) dxds

1.1 Exercise. In (iii) appears the composed differential operator

∂s − ∂x(a)− a · ∂x − b) ◦ Γ

Show that in the ring of differential operators with C∞-coefficients this differential
operator can be written in the form

Γ ◦ (∂s − a · ∂x − b) +Q(x, s, ∂x, ∂s)

where Q is a differential of order ≤ 2k with coefficients in C∞(�). Conclude from
the above that

(1.1.1) 〈Pf, g〉 = −〈f, Pg〉+

∫
�
f ·Q(ḡ) dxds

1.2 Exercise. With Q as above we have a bilinear form which sends a pair f, g in
C∞(�) to

(1.2.1)

∫
�
f ·Q(ḡ) dxds

Use partial integration and the Cauchy-Schwarz inequelity to show that there exists
a conatant C which depends on Q only such that the absolute value of (1.2.1) is
majorized by CQ · ||f ||k · ||g||k. Conclude that there exists a bounded linear operator
Bk on H such that

(1.2.2) 〈f,Bk(g)〉 =

∫
�
f ·Q(ḡ) dxds

1.3 Proof that Bk is self-adjoint From the above we have

(1.3.1) 〈Pf, g〉 = −〈f, Pg〉+ 〈f,Bk(g)〉
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Keeping f in C∞(�) we notice that 〈f,Bk(g)〉 is defined for every g ∈ H. From
this the reader can check that (1.3.1) remains valid when g belongs to D(Tk) which
means that

(1.3.2) 〈Pf, g〉 = −〈f, Tkg〉+ 〈f,Bk(g)〉 : f ∈ C∞(�)

Moreover, when both f and g belong to C∞(�) we can reverse their positions in
(*) which gives

(1.3.3) 〈Pg, f〉 = −〈g, Pf〉+ 〈g,Bk(f)〉
Since a and b are real-valued it is clear that

(1.3.4) 〈Pg, f〉 = −〈f, Pg〉
It follows that

(1.3.5) 〈f,Bk(g) = 〈g,Bk(f) : f, g ∈ C∞(�)

Since this hold for all pairs of C∞-functions and Bk is a bounded linear operator
on H the density of C∞(�) entails that Bk is a bounded self-adjoint operator on
H.

1.4 The equality D(T ∗k ) = Dk. The density of C∞(�) in H entails that a function
g ∈ H belongs to D(T ∗k ) if and only if there exists a constant C such that

(1.4.1) |〈Pf, g〉| ≤ C · ||f || : f ∈ C∞(�)

Since Bk is a bounded operator, (1.3.2) gives the inclusion

(1.3.3) Dk ⊂ D(T ∗k )

To prove the opposite inclusion we use that the Γ-operator is elliptic. If g ∈ D(T ∗k )
we have from (i) in § 1.1:

〈Pf, g〉 = 〈f, T ∗k g〉 =

∫
Γ(f) · T ∗k (g) dxds : f ∈ C∞(�)

Similarly

〈f,Bk(g)〉 =

∫
Γ(f) ·Bk(g) dxds

Treating Tk(g) as a distribution the equation (1.3.2) entails that the elliptic operator
Γ annihilates T ∗k (g)−Tk(g) +Bk(g). Since both T ∗k (g) and Bk(g) belong to H this
implies by the general result in § xx that Tk(g) belongs to H which proves the
requested equality (1.4) and at the same time the operator equation

(1.4.2) T ∗k = −Tk(g) +Bk

1.5 An inequality. Let f ∈ C∞(�) and λ is a positive real number. Then

||Tk(f)− 1

2
Bk(f)− λ · f ||2 =

||Tk(f)− 1

2
Bk(f)||2 + λ2 · ||f ||2 − λ

(
〈Tk(f)− 1

2
Bk(f), f〉+ 〈f, Tk(f)− 1

2
Bk(f)〉

)
The last term is λ times

(i) 〈Tk(f), f〉+ 〈f, Tk(f)〉 − 〈f,Bkf〉
where we used that Bk is symmetric. Now Tk = Tk holds on C∞(�) and the
definition of adjoint operators give

(ii) 〈Tk(f), f〉 = 〈f, T ∗k 〉
Then (1.4.2 ) implies that (i) is zero and hence we have proved

(iii) ||Tk(f)− 1

2
Bk(f)− λ · f ||2 = λ2 · ||f ||2 + ||Tk(f)− 1

2
Bk(f)||2 ≥ λ2 · ||f ||2



20

From (iii) and the triangle inequality for norms we obtain

(iv) ||Tk(f)− λ · f || ≥ λ · ||f || − 1

2
||Bk(f)||

Now Bk has a finite operator norm and if λ ≥ ||Bk|| we see that

(v) ||Tk(f)− λ · f || ≥ λ

2
· ||f ||

Finally, since C∞(�) is dense in D(Tk) it is clear that (v) gives

(1.5.1) ||Tk(f)− λ · f || ≥ λ

2
· ||f || : f ∈ D(Tk)

§ 2. Proof of Theorem 3.1

Suppose we have found some λ∗ ≥ 1
2 · ||B|| such that Tk−λ has a dense range in H

for every λ ≥ λ∗. If this is so we fix λ ≥ λ∗ and take some g ∈ H. The hypothesis
gives a sequence {fn ∈ D(Tk) such that

lim
n→∞

||T (fn)− λ · fn − g|| = 0

In particular {||Tk(fn)−λ ·fn} is a Cauchy sequence in H and (1.5.x ) implies that
{fn} is a Cacuhy sequence in the Hilbert space H and hence converges to a limit
f∗. Since the operator Tk is closed we conclude that f∗ ∈ D(T ) and we get the
equality

T (kf∗)− λ · f∗ = g

Finally, since the graph of T is contained in T1 we have the requested equation

P (f∗)− λḟ∗ = g

Thus finishes the proof of Theorem 1.6 provided we have established the existence
of λ∗ above

2.1 Density of the range. By the construction of adjoint operators the range of
Tk − λ · E fails to be dense if and ony if T ∗k − λ has a non-zero kernel. So assume
that

(i) T ∗k (f)− λ · f = 0

for some f ∈ D(T ∗k ) which is not identically zero. Notice that Tk sends real-vaölued
functions into real-valued functions. So above we can assume that f is real-valued
and also assume that f is normalised so that∫

�
f2(x, s) dxds = 1

By (**) the equation (xx) gives

(ii) Tk(f) + λ · f −B(f) = 0

Let us then consider the function

V (s) =

∫ π

0

f2(x, s) dx

Recall from § xx that the H-function f is of class C1. Now

(iii)
1

2
· V ′(s) =

∫ π

0

f · ∂f
∂s

dx

By (ii) we have
∂f

∂s
− a(x)

∂f

∂x
− b · f = B(f)− λ · f
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Hence the right hand side in (iii) becomes

−λ · V (s) +

∫ π

0

f(x, s) ·B(f)(x, s) dx+ +

∫ π

0

a(x, s) · f(x, s) · ∂f
∂x

(x, s) dx

By partial integration the last term is equal to

−1

2

∫ π

0

∂x(a)(x, s) · f2(x, s) dx

Set

M =
1

2
· max

(x,s)∈�
|∂x(a)(x, s)|

Then we get the inequality

1

2
· V ′(s) ≤ (M − λ) · V (s) +

∫ π

0

f(x, s) ·B(f)(x, s) dx

Set

Φ(s) =

∫ π

0

|f(x, s)| · |B(f)(x, s)| dx

Since the L2-norm of f is one the Cauchy-Schwarz inequality gives∫ π

−π
Φ(s) ds ≤

√∫
�
|B(f)(x, s)|2 dxds ≤ ||B(f)||

where the last equality follows since the squared integral of B(f) is majorized by
its squared norm in H. When λ > M it follows from (xx) that

(λ−M) · V (s) +
1

2
· V ′(s) ≤ Φ(s)

Next, since f is double periodic we have V (−π) = V (π) so after an integration (xx)
gives

(λ−M) ·
∫ π

π

V (s) ds =

∫ π

−π
Φ(s) ds ≤ ||B(f)||

By (xx) we have
∫ π
π
V (s) ds = 1 which gives a contradiction if λ > M + ||B(f)||.

Remark. Set
τ = min

f
||B(f)||

with the minimum taken over funtions f ∈ D(T ∗0 ) whose L2−integral is normalised
by (xx). The proof has shown that the kernel of T ∗0 − λ is zero for all λ > M + τ .
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A special solution.

Let f(x) be a periodic C∞-function on [0, π]. Put

Q = a(x, s) · ∂
∂x

+ b(x, s)

Let η(s) be a C∞-function of s and m a postive integer If λ > 0 is a real number.
we set

(i) gλ(x, s) = η(s) · f + η(s) ·
j=m∑
j=1

(s− π)j

j!
· (Q− λ)j(f) : 0 ≤ s ≤ π

We choose η to be a real-valued C∞-function such that η(s) = 0 when s ≤ 1/4
and -1 if s ≥ 1/2. Hence gλ(x, s) = 0 in (i) when 0 ≤ s ≤ 1/4 and we extend the
function to [−π ≤ s ≤ π where gλ(x,−s) = gλ(x, s) if 0 ≤ s ≤ π. So now gλ is
π-periodic with respect to s and vanishes when |s| ≤ 1/4.

Exercise. If 1/2 ≤ s ≤ π we have η(s) = 1. Use (i) to show that

(P + λ)(gλ) =
∂gλ
∂s
− (Q− λ)(gλ) =

(s− π)m

m!
· (Q− λ)m+1(f)

hold when 1/2 ≤ s ≤ π. At the same time gλ(s) = 0 when 0 ≤ s ≤ 1/4. So
(P + λ)(g) is a function whose derivatives with respect to s vasnish up to order
m at s = 0 and s = π and is therefore doubly periodic of class Cm in �. Now
Theorem 2.2 applies. For a given k ≥ 2 we choose a sufficently large m and find
h(x, s) so that

P (h) + λ · h = (P + λ)(gλ)(x, s)

where h is s-periodic, i.e.
h(x, 0) = h(x, π)

Notice also that gλ(x, 0) = 0 while gλ(x, π) = f(x). Set

g∗(x) = h− gλ
Then P (g∗) + λ · g∗ = 0 and

g∗(x, 0)− g∗(x, π) = f(x)

Above we started with the C∞-function. Given k ≥ 2 we can take m sufficiently
large during the constructions above so that g∗ belongs to H(k)(�).


