
Extension property

The talk is based on a joint paper with John McCarthy.

Let D be a set in Cd, and V be a subset of D, with no extra structure assumed. A

function f : V → C is said to be holomorphic if, for every point a ∈ V , there exists

t > 0 and a holomorphic function F defined on the ball B(a, t) in Cd such that F

agrees with f on V ∩B(a, t). Let A be an algebra of polynomials equipped with the

sup-norm.

We say V has the A extension property if, for every f in A, there exists F ∈ O(D),

such that F |V = f and ||F || = ||f ||, where both norms are the supremum of the

modulus of the function over the appropriate set.

If D is pseudo-convex, and V is an analytic subvariety of D, it is a deep theorem of

H. Cartan that every holomorphic function on V extends to a holomorphic function

on D. The first result we know of norm-preserving extensions is due to W. Rudin,

but with the extra hypothesis that the extension operator had algebraic structure.

Agler and McCarthy studied the problem when D is the bidisc (see [1]). Recently,

the result in this direction was obtained by Agler, Lykova and Young ([2]) for the

symmetrized bidisc.

The purpose of my talk is to present a solution for a general class of domains

(including polydiscs and strongly convex domains).
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