CAUCHY INTEGRALS METHOD IN THE STUDY OF PERTURBATIONS OF OPERATORS

Johan Balkare Department of Mathematics Royal Institute of Technology (KTH) Supervisor: Serguei Shimorin

Abstract

For a positive number α , we denote by Λ_{α} the space of all functions $f: \mathbb{D} \to \mathbb{C}$ which are analytic in the open unit disc $\mathbb{D} \subset \mathbb{C}$ and fulfil the Hölder condition of order α on \mathbb{D} . For $\alpha \in (0, 1)$, we show that if $f \in \Lambda_{\alpha}$, then f is an operator Hölder function of order α on the set of all linear contractions on a Hilbert space. Further, it is known that if $f \in \Lambda_1$, i.e that f is an analytic Lipschitz function on \mathbb{D} , then f need not be operator Lipschitz. We show that, if we add the property

$$\sup_{t\in\mathbb{R}}\iint_{\mathbb{D}}\frac{1-|z|^2}{|e^{it}-z|^2}|f''(z)|dA(z)<\infty$$

where z = x + iy and dA = dxdy, then f is operator Lipschitz. The two results are shown by tools from operator theory including the Spectral theorem and dilations of contractions.

We also solve a problem related to theory of dilations which was arisen on a mathematical question- and answer site. We show that if X, Y, Z are pairwise commutating operators on a Hilbert space with

- 1. $||Z|| \le 1$,
- 2. for any $z \in \mathbb{C}$ with $||z|| \leq 1$,

 $\|X + zY\| \le 1,$

then $||X + ZY|| \le 1$ is false in general.