
Introduction

In the seminar will expose results due to Carleman concerning asymptotic behaviour of eigenfunc-
tions which arises while one reards the Laplace operator on the space L2(Ω) where Ω is a bounded
Dirichlet domain in R2. As a background a section is inserted about the planar Dirihclet problem
where a result due to Boulignard and Perron is presented which shows that the Dirichlet problem
has solutions for a quite extensive family of bounded open. A fundamnetal fact is that if Ω is
a bounded Dirichlet domain , i.e. every φ ∈ C0(∂Ω) has a harmonic extension to Ω, then there
exists an orthonormal family {φn} of real-valued functions in the Hilbert space L2(Ω) where

(*) ∆(φn) + λn · φn = 0

hold for a non-decreasiung sequence of positive real ,numbers 0 < λ1 ≤ λ2 ≤ . . .. Moreover,
each φn is a continuous function which is identically zero in ∂Ω. The family {φn} can be used
to analyze various differential equations. An example comes from probability theory when a
Browninan motion starts at time t = 0 at given a given point z ∈ Ω. Then we can consider the
function t 7→ π(z, t) which for every positive time t > 0 is the probablity that a Browninan path
stays in Ω up to time t. Now π is a function of both t and z and via a trivial Taylor expansion
one verifies that this function satisfies the PDE-equation

∂π(z, t)

∂t
=

1

2
·∆(π(z, t))

where the right hand side means that we apply the Laplace operator to the function z 7→ π(z, t)
when the real (x, y) space is identified with the complex z-plane. When z is close to ∂Ω the
probability to stay in Ω gets small and hence π satisfies the boundary condition

lim
z→∂Ω

π(z, t) = 0 : t > 0

Using one finds that this boundary value problem has the solution

π(z, t) =
∑

cn · e−λn·t/2 · φn(z)

Here {cn} are constants such that∑
cn · φn(z) = 1 : z ∈ Ω

expressing the fact that the Browninan motion stays inside Ω with high probability during small
initial time intervals. Since {φn} is an orthonormal family in L2(Ω one has

cn =

∫∫
Ω

φn(x, y)dxdy

The equations above illustrate that the eigenfunctions {φn} give insight into the pribelity which
measure the life-time for a Brownian motion. Consider for example the mean-value for the time
of survival when the motion starts at a point z ∈ Ω. From the above the mean value is expressed
by

∞∑
n=1

∫ ∞
0

t · λn/2 · e−λnt/2 dt · cn · φn(z)

A computation shows that the sum above is equal to

(*)
∑

cn · φn(z)

Here the constants {cn} are independet of z so the point evaluations of the φ-functions determine
the requiested mean value.

The example above illustrates why it is of interest to analyze asympotic behaviour of the sequence
{φn(p)} for each fixed point p. The results in Section A give certain averaged asymptotic formulas
for these point-evaluatioins. Before we enter the general material in Section A we insert some
special observations related to the Laplace operator. To begin with we consider the 1-dimensional

case where δ is reduced to the second order differential operator s2

dx2 . Consider for example the
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interval [0, π] and now we seek eigenfunctions y(x) for which y(0) = y(π) = 0. If n is a postiive
integer we find that the sine-functiuon yn(x) = sin(x) satisfies the equation

y′′n(x) + n2yn(x) = 0

and via expansions of L2-functions into Fourier series we conclude that {yn(x)} is is an orthogonal
family in L2[0, π]. Notice that ∫ π

0

sin2(nx) dx =
π

2

hold for every positive integer n and hence the functions

φn(x) =

√
2√
π
· sin(nx)

is an orthonormal family.

A limit formula. Consider some fixed number 0 < aπ and for each N ≥ 1 we put

SN (a) =
1

N
·
n=N∑
n=1

φ2
n(a)

With these notations one has

(*) lim
N→∞

SN (a) =
1

2π

Thus, these averaged sums have a common limit for every 0 < a < π. The proof follows via the
formula for trigonmetric functions expressed by

sin2(nx) =
1

2
· (1− cos(2nx))

and after one employs the fact that the series
∞∑
n=0

e−2ina

converges for each 0 < a < π where the sum is equal to 1
1−e2ia .

Passing to the 2-dimensional case we can consider the domain

� = {(x, y) : 0 < x, y < π}
Here we find eigenfunctions for the Laplace operator where

∆(sin nx · sin my) + (n2 +m2) sin nx · sin y = 0

and exactly as inte 1-dimensional case we get an orthonormal family in L2(�) by the doubly-
indexed functions

φn,m(x, y) =
2

π
· sin nx · sin my

At this stage the reader is invited to check the contents of Theorem A.2 for the special Dirichlet
domain � where the set of positive eigenvalues for ∆ consists of positive integers of the form

n2 +m2 : n,m ≥ 1

Limit formulas for more general PDE-operatos. On the real interval [0, π] we can regard
a second order differential operator

P (u)(x) = u′′(x) + a(x) · u(x)

where a(x) is real-valud and of class C1, i.e. continuosly differentiable and in addition periodic,
i.e. a(0) = a(π) and similarly for the first order derivative. Here P fails to be symmrric, i.e. its
adjoint P ∗ becomes

P ∗(u)(x) = u′′(x)− a(x)f ′(x)− a′(x)f(/x)
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When P 6= P ∗ the eigenvalues λ for which there exists a function u(x) where u(0) = u(π) and

u′′(x) + a(x)u(x)− λ · u(x) = 0

in general are non-real complex numbers. So now one is confronted with a delicate situation where
conclusive limit formulas are hard - or even almost imposseible - to attain. However, it turns out
that a general asymptotic formula hold for the real parts of the eigenvalues. More precisely, if the
eigenvalues are arranged in such a way that thier real parts form a non-decreasisng sequence then

lim
N→∞

1√
N
·
n=N∑
n=1

Re(λn) = 1

just as in the case when the a-function is identically zero.
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Asymptotic formulas for eigenfunctions of the Laplace operator in Dirichlet domains

The subsequent results were presented by Carleman at the Scandinavian Congress in mathematics
held in Stockholm 1934: Consider a bounded Dirichlet domain Ω R2, i.e. every f ∈ C0(∂Ω) has
a harmonic extension to Ω. For every fixed point p ∈ Ω one regards the continuous function

q 7→ log
1

|p− q|
: q ∈ ∂Ω

which gives a unique harmonic function x 7→ H(p, x) in Ω such that

H(p, q) +
1

|p− q|
= 0 : q ∈ ∂Ω

A wellknown fact established by G. Neumann and H. Poincaré shows that the H-function is
symmetric, i.e.

H(p, q) = H(q, p)

hold for each pair of points p, q in Ω. Greens’ function is defined by

G(p, q) = log
1

|p− q|
+H(p, q)

Notice that for each fixed p ∈ Ω it follows that the function q 7→ G(p, q) is super-harmonic and
zero when q ∈ ∂Ω. The minimum principle for superharmonic functions entails that

(i) G(p, q) > 0 : p, q ∈ Ω

and the reader shold check that

(ii)

∫∫
Ω×Ω

|G(p, q)|2 dpdq <∞

Hence the linear operator G on the Hilbert space L2(Ω) defined by

G(φ)(p) =
1

2π
·
∫

Ω

G(p, q)φ(q)dq

is of the Hilbert-Schmidt type and therefore compact on the Hilbert space L2(Ω). Since the kernel
positive the eigenvalues are positive, and wellknown facts about such nice integral operators give
a sequence of pairwise orthogonal functions {φn} whose L2-norms are one and

(1) G(φn) = µn · φn
where {µn} is a non-increasing sequence of positive eigenvalues which tend to zero. Moreover,
since the kernel G(p, q) is positive it follows - again by general facts - that {φn} is an orthonormal
basis in L2(Ω), i.e. each real-valued function f ∈ L2(Ω) has an expansion

(2) f =
∑

an · φn : an =

∫
Ω

fn(p) · φn(p) dp

Exercise. Verify that each φ-function extends to a continuous function on Ω whose boundary
values are zero.

Next, let ∆ be the Laplace operator. Since 1
2π · log |z| is a fundamental solution it follows that

(3) ∆ ◦ G(f) = −f : f ∈ L2(Ω)

Thus, the composed operator ∆ ◦ G = −E where E is the identity operator. Put

λn = µ−1
n

Then (1) and (3) give

(4) ∆(φn) = −λn · φn : n = 1, 2, . . .

where we now have 0 < λ1 ≤ λ2 ≤ . . .}.

With these notations we can announce Carleman’s theorem.
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A.1. Theorem. For every Dirichlet domain Ω and each p ∈ Ω one has the limit formula

(*) lim
N→∞

λ−1
N ·

n=N∑
n=1

φn(p)2 =
1

4π

To prove this we consider some point p ∈ Ω. Since every φnis harmonic and has L2-norm one,
the reader can check that with a fixed p there exists a constant C(p) such that

φn(p)2 ≤ C(p) : n = 1, 2, . . .

Hence there exists the Dirichlet series

Φp(s) =

∞∑
n=1

φn(p)2

λsn

which is analytic in the half-space Re s > 1. We are going to prove the following result:

A. 2 Theorem. There exists an entire function Ψp(s) such that

Φp(s) = Ψp(s) +
1

4π(s− 1)

Remark. Theorem A.2 gives Theorem A.1 by a result due to Norbert Wiener in his article
Tauberian theorem [Annals of Math.1932] which asserts that if {λn} is a non-decreasing sequence
of positive numbers tending to infinity and {an} a sequence of non-negative real numbers such
that there exists the limit

lim
s→1

(s− 1) ·
∑ an

λsn
= A

then it follows that

lim
n→∞

λ−1
n ·

k=n∑
k=1

ak = A

Proof of Theorem A. 2

Since G is a Hilbert-Schmidt operator a wellknown result due to Schur gives

(i)
∑

λ−2
n <∞

This convergence entails that various constructions below are defined. For each λ outside the
discrete set {λn} we put

(ii) G(p, q;λ) = G(p, q) + 2πλ ·
∞∑
n=1

φn(p) · φn(q)

λn(λ− λn)

This gives the integral operator Gλ defined on L2(Ω) by

(iii) Gλ(f)(p) =
1

2π
·
∫∫

Ω

G(p, q;λ) · f(q) dq

Exercise. Use that the eigenfunctions {φn} is an orthonormal basis in L2(Ω) to show that

(∆ + λ) · Gλ = −E

B. The function F (p, λ). Set

F (p, q, λ) = G(p, q;λ)−G(p, q)

Keeping p fixed we see that (ii) gives a function defined by

(B.1) F (p, λ) = lim
q→p

F (p, q, λ) = 2πλ ·
∞∑
n=1

φn(p)2

λn(λ− λn)
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From (i) and (B.1) it follows that this yields a meromorphic is a function in the complex λ-plane
with at most simple poles at {λn}.
C. Exercise. Let 0 < a < λ1. Use residue calculus to show the equality below in the half-space
Re s > 2:

(C.1) Φp(s) =
1

4π2 · i
·
∫ a+i∞

a−i∞
F (p, λ) · λ−s dλ

where the line integral is taken on the vertical line Reλ = a.

D. Change of contour integrals. At this stage we employ a device which goes to Riemann and
move the integration into the half-space Re(λ) < a. Consider the curve γ+ defined as the union
of the negative real interval (−∞, a] followed by the upper half-circle {λ = aeiθ : 0 ≤ θ ≤ π} and
the half-line {λ = a+ it : t ≥ 0}. Cauchy’s theorem entails that∫

γ+

F (p, λ) · λ−s dλ = 0

We leave it to the reader to contruct the similar curve γ− = γ̄+. Using the vanishing of these
line integrals and taking the branches of the multi-valued function λs into the account the reader
should verify the following:

E. Lemma. One has the equality

(E.1) Φp(s) =
as−1

4π
·
∫ π

−π
F (aeiθ) · e(i(1−s)θ dθ +

sinπs

2π2
·
∫ ∞
a

F (p,−x) · x−s dx

The first term in the right hand side is obviously an entire function of s. So there remains to
prove that

(E.2) s 7→ sinπs

2π2
·
∫ ∞
a

F (p,−x) · x−s dx

is meromorphic with a single pole at s = 1 whose residue is 1
4π . To show this we are going to

express F (p,−x) when x are real and positive in another way.

F. The K-function. In the half-space Re z > 0 there exists the analytic function

K(z) =

∫ ∞
1

e−zt√
t2 − 1

dt

Exercise. Show that K extends to a multi-valued analytic function outside {z = 0} given by

(F.1) K(z) = −I0(z) · log z + I1(z)

where I0 and I1 are entire functions with series expansions

(i) I0(z) =

∞∑
m=0

2−2m

(m!)2
· z2m

(ii) I1(z) =

∞∑
m=0

ρ(m) · 2−2m

(m!)2
· z2m : ρ(m) = 1 +

1

2
+ . . .+

1

m
− γ

and γ is the usual Euler constant.

Next, with p kept fixed and κ > 0 we solve the Dirichlet problem and find a function q 7→ H(p, q;κ)
which satisfies the equation

(F.2) ∆(H)− κ ·H = 0

in Ω with boundary values

H(p, q;κ) = K(
√
κ|p− q|) : q ∈ ∂Ω
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G. Exercise. Verify the equation

G(p, q;−κ) = K(
√
κ · |p− q|)−H(p, q;κ) : κ > 0

From (F.1) the reader can verify the limit formula:

(G.1) lim
q→p

[K(
√
κ · |p− q|) + log |p− q|] = −1

2
· log κ+ log 2− γ

where γ is Euler’s constant. Next, the construction of G(p, q) gives

(G.2) F (p,−κ) = lim
q→p

[K(
√
κ · |p− q|) + log |p− q|] + lim

q→p
[Hp(q) +H(p, q, κ)]

The last term above has the ”nice limit” up(p) +H(p, p, κ) and from (F.1) the reader can verify
the limit formula:

(G.3) lim
q→p

[K(
√
κ · |p− q|) + log |p− q|]− 1

2
· log κ+ log 2− γ

where γ is Euler’s constant.

H. Final part of the proof. Set

A = + log 2− γ +Hp(p)

Then (G.1-3)) give

(H.1) F (p,−κ) = −1

2
· log κ+A+H(p, p;κ)

Above κ > 0 and using x = −κ in (E.2 ) we can proceed as follows. To begin with it is clear that

s 7→ A · sinπs

2π2
·
∫ ∞
a

x−s dx

is an entire function of s. Next, consider the function

ρ(s) = −1

2
· sinπs

2π2
·
∫ ∞
a

log x · x−s dx

Notice that the complex derivative

d

ds

∫ ∞
a

x−s dx = −
∫ ∞
a

log x · x−s dx

H.1 Exercise. Use the last equality to show that

ρ(s)− 1

4π(s− 1)

is an entire function.

From the above we see that Theorem D.2 follows if we have proved

H.2 Lemma. The following function is entire:

s 7→ sin πs

2π2
·
∫ ∞
a

H(p, p, κ) · κ−s dκ

Proof. When κ > 0 the equation (F.1) shows that q 7→ H(p, q;κ) is subharmonic in Ω and the
maximum principle gives

(i) 0 ≤ H(p, q;κ) ≤ max
q∈∂Ω

K(κ|p− q|)

Next, since p ∈ Ω is fixed there is a positive number δ > 0 such that

|p− q| ≥ δ : q ∈ ∂Ω

and it follows from the above that we can take q = p and obtain

(i) H(p, p;κ) ≤
∫ ∞

1

e−δ·t√
t2 − 1

dt
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If we choose some 0 < α < δ the reader can check that (i) yelds a constant b so that

H(p, p;κ) ≤ B · e−α·κ

and finally it is clear that this exponential decay gives Lemma H.2.



9

The p∗-function.

We shall construct a special harmonic function which is used to get solutions of the Dirichlet
problem. Let Ω be an open and connected set in C and consider the connected components of its
closed complement. Let E be such a connected component which is not reduced to a single point.
Let us then consider some closed and simple Jordan curve γ contained in Ω. For each point a ∈ E
there exists the winding number wa(γ) defined by the integer

1

2πi

∫
γ

dz

z − a
If b is another point in the connected set E the continuity of the integer-valued winding number
implies that

(*) wa(γ) = wb(γ)

This equality yields a single-valued analytic function in Ω given by the difference

log (z − a)− log (z − b)
Taking the exponential we find an analytic function ψ(z) in Ω such that

eΨ(z) =
z − a
z − b

Since a 6= b we see that Ψ(z) 6= 0 for all z ∈ Ω and obtain the harmonic function in Ω defined by

(*) p(z) = Re
( 1

Ψ(z)

)
=

Re(Ψ(z)

|Ψ(z)|2

Next, we have
Re(Ψ(z)) = Log |z − a| − Log|z − b|

and since log |z − a| → −∞ as z → a we see from (*) that

(**) lim
z→a

p(z) = 0

Notice also that Ψ(z) exends to a continuous function on Ω̄ \ (a, b) and we can choose a small
δ > 0 such that

(ii) Log|z − a| − Log |z − b| < −1 : |z − a| ≤ δ
From the above we can conclude:

7.1 Theorem. Let a ∈ ∂Ω be such that the connected component of C \ Ω which contains a is
not reduced to the single point a. Then there exists a harmonic function p∗(z) in Ω for which

lim
z→a

p∗(z) = 0

and there exists δ > 0 such that

0 < r < δ =⇒ max
{|z−a|=r}∩Ω

p∗(z) < 0 :
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1. The Dirichlet Problem.

Introduction. Let Ω be a bounded open set in C. No connectivity assumptions are imposed,
i.e. neither Ω or ∂Ω have to be connected. To each φ ∈ C0(∂Ω) we shall construct a harmonic
function Hφ in Ω by a contruction due to Perron. Denote by P(φ) the family of subharmonic
functions u(z) in Ω satisfying

(0.1) lim sup
z→w

u(z) ≤ φ(w) : w ∈ ∂Ω

One verifies that the function defined for z ∈ Ω by

(*) Hφ(z) = max
u∈P(φ)

u(z)

is harmonic in Ω. A boundary point a is called Dirichlet regular if

(**) lim
z→a

Hφ(z) = φ(a) : φ ∈ C0(∂Ω)

If (**) holds for every boundary point then Perron’s solution extends to a continuous function
on the closure Ω̄ and solves the Dirichlet problem with the prescribed boundary function φ. We
shall prove that (**) holds under a certain geometric condition.

1.1 Theorem. Let a ∈ ∂Ω be such that the connected component of a in the closed complement
C \ Ω is not reduced to the singleton set {a}. Then (**) holds for every φ.

The proof involves several steps. First we consider Perron’s solution in the special case when

φ(z) = |z − a|
which we denote by Ha(z). Notice that the function

z 7→ |z − a|
is subharmonic and hence Perron’s function Ha(z) satisfies

(1) |z − a| ≤ Ha(z) : z ∈ Ω

Now we shall prove:

1.2 Boulignad’s Lemma. Let a ∈ ∂Ω satisfy the condition in Theorem 1.1. Then

lim
z→a

Ha(z) = 0

Proof. The assumption upon a and Theorem 0.1 gives a harmonic function p∗(z) in Ω such that

(1) lim
z→a

p∗(z) = 0 and p∗(z) < 0 : z ∈ Ω

Next, let ε > 0. Since a ∈ ∂Ω we find 0 < r ≤ ε such that the circle |z − a| = r has a non-empty
intersection Γ with Ω. Put

(2) M = max
z∈Ω

|z − a|

We can choose a compact subset Γ∗ of Γ such that

(3) ` = arc-length (Γ \ Γ∗) ≤
ε

M

In the disc D = {|z − a| < r} we find the harmonic function V (z) whose boundary values on
|z − a| = r are zero outside the open set Γ \ Γ∗ while V = M holds on Γ \ Γ∗. Next, since Γ∗ is a
compact subset of Ω and p∗a < 0 in Ω there exists δ > 0 such that

(4) p∗(z) ≤ −δ : z ∈ Γ∗

Set

(5) B(z) = V (z)− M

δ
· p∗(z)

This is a harmonic function in Ω ∩D and the construction of V together with (4) give

(6) B(z) ≥M : z ∈ Γ
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Next, in the the open set U = Ω ∩D we have the subharmonic function

(7) g = Ha −B
Since |z − a| ≤ ε holds in the closed disc in D̄ we have

(8) lim sup
z→w

Ha(z) ≤ ε : w ∈ D̄ ∩ ∂Ω

and (2) implies that Ha(z) ≤M holds in Ω which gives

(9) lim sup
z→w

Ha(z) ≤M : w ∈ Γ

At this stage we use the set-theoretic inclusion

(10) ∂(D ∩ Ω) ⊂ Γ ∪ (D̄ ∩ ∂Ω)

Hence (6) together with (7-8) entail that

(10) lim sup
z→w

Ha(z)−B(z) ≤ ε : w ∈ ∂(Ω ∩D)

The maximum principle applied to the subharmonic function H −B in Ω ∩D and (10) give

(11) lim sup
z→a

Ha(z) ≤ ε+ lim sup
z→a

B(z) = ε+ V (a) + lim sup
z→a

p∗(z) = ε+ V (a)

where (1) gives the last equality. Finally, the mean-value formula for the harmonic function V
and (3) entail that

(12) V (a) = ` ·M ≤ ε
Hence the limes superior in the left hand side of (11) is ≤ 2ε and since ε > 0 was arbitrary small
we get lim supz→a Ha(z) ≤ 0 which finishes the proof of Boulignad’s lemma.

§ 1.3 Proof of Theorem 1.1.

Let φ ∈ C0(∂Ω) with the Perron solution Hφ(z). If c is a constant it is clear that Hφ−c = Hφ− c.
Replacing φ by φ(z)− φ(a) we may therefore assume that φ(a) = 0 and it remains to show that

(1) lim
z→a

Hφ(z) = 0

First we consider the limes superior and show that

(2) lim sup
z→a

Hφ(z) ≤ 0

To get (2) we take some ε > 0 and the continuity of φ gives δ > 0 such that

φ(z) ≤ ε : z ∈ ∂Ω ∩Da(δ)

Put M∗ = maxz∈∂Ω |φ(z)| and define the harmonic function in Ω by

g∗(z) = ε+
M∗

δ
·Ha(z)

Since Ha(z) ≥ |z − a| we have:

lim inf
z→b

g∗(z) ≥M∗ : b ∈ ∂Ω \Da(δ)

At the same time g∗(z) ≥ ε for every z ∈ Ω so g∗ ≥ φ on the whole boundary and the maximum
principle for harmonic functions gives:

u ≤ g∗ : u ∈ P(φ)

The construction of Hφ entails that Hφ ≤ g∗ holds in Ω which implies that

lim sup
z→a

Hφ(z) ≤ lim sup
z→a

g∗(z) = ε

where the last equality follows from Boulignad’s Lemma. Since ε can be arbitrary small we get
(2). There remains to show that

(3) lim inf
z→a

Hφ(z) ≥ 0
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To prove (3) we put

g∗(z) = −ε− M∗

δ
·Ha(z)

It is clear that
lim sup
z→ξ

g∗(z) ≤ φ(ξ) for all boundary points ξ ∈ ∂Ω

Hence g∗ ∈ P(φ) which gives g∗ ≤ Hφ. So now we have

lim inf
z→a

Hφ(z) ≥ lim inf
z→a

g∗(z) = −ε

Since ε can be arbitrary small we get (3) and Theorem 1.1 is proved.


