Lecture about unbonded self-adjoint operators

Given a complex Hilbert space H which to every pair of vectos x, y yields the inner product $\langle x, y \rangle$ a densely defined linear operator A is symmetric if

$$\langle Ax, y \rangle = \langle x, Ay \rangle : x, y \in \mathcal{D}(A)$$

where $\mathcal{D}(A)$ is the domain of definition of A. Following a construction introdued in full generality by Hermann Weyl around 1910 one gets the adjoint operator A^* where a vector y belongs to $\mathcal{D}(A^*)$ if there exists a constant C(y) such that

$$|\langle Ax, y \rangle| \le C(y) \cdot ||x|| : x \in \mathcal{D}(A)$$

and then A^*y is the vector for which

$$\langle x, y \rangle = \langle x, A^* y \rangle : x \in \mathcal{D}(A)$$

The symmetry of A entails that A^* is an extension, i.e. one has an inclusion of graphs:

$$\Gamma(A) \subset \Gamma(A^*)$$

One checks that $\Gamma(A^*)$ has a closed graph and hence A^* has a spectrum $\sigma(A^*)$ which is a closed subset of \mathbf{C} . In the special case when A is a bounded operator with $\mathcal{D}(A) = \mathcal{H}$ the symmetry implies that $A = A^*$ and $\sigma(A)$ is a compact subset of the real line. For an unbounded densely defined symmetric operator the situation is more complicated. In fact, around 1910 Hermann Weyl found "ugly examples" where A is a second order differential operator acting on a dense subspace of $L^2(\mathbf{R})$, while $\sigma(A^*)$ is the whole complex plane. This led Torsten Carleman to analyze more general cases. His monograph Sur les équations singulières à noyau réel et symmetrique published in Uppsala 1923 contains a study of unbounded self-adjoint operators which culminates in the spectral decomposition which extends David Hilbert's classic result of spectral resolutions of bounded and self-adjoint operators. More precisely Carleman realised that A has a self-adjoint extension if and only if the inclusion (*) gives equality when we pass to the closure of $\Gamma(A)$, i.e. when

$$(**) \overline{\Gamma(A)} = \Gamma(A^*)$$

In my talk I explain how (**) yields the spectral theorem for unbounded self-adjoint operators which after is followed by some examples. One is the Schrödinger operator $L = \Delta + c(x, y, z)$ where Δ is the Laplace operator in \mathbf{R}^3 and c(x, y, z) a real-valued and locally square integrable function. It is clear that L is densely defined on the complex Hilbert space $L^2(\mathbf{R}^3)$ and restricted to the dense subspace $C_0^{\infty}(\mathbf{R}^3)$ one has symmetry i.e.

$$\iiint Lf) \cdot \bar{g} \, dxdydz = \iiint f \cdot L(\bar{g}) \, dxdydz$$

hold when f and g are test-functions. There exist "ugly cases" where L fails to have a self-adjoint extension while self-adjointness hold for certain c-functions. A sufficient condition for L to admit a self-adjoint extension is that the c function satisfies the limit condition:

(1)
$$\operatorname{Lim.sup}_{x^2+y^2+z^2\to+\infty} c(x,y,z) < +\infty$$

This result is proved in Carleman's article Sur la theorie mathématique de l'équation de Schrödinger published in Arkiv för matematik 1934. I my lecture I will present the special case when the c-function is a Newtonian potential, i.e

$$c(p) = \sum_{\nu=1}^{\nu=N} \frac{m_{\nu}}{|p - p_{\nu}|}$$

where p_1, \ldots, p_N is a finite set of mass-points in \mathbb{R}^3 .