Combinatorial Methods in Complex Analysis

Per Alexandersson

Academic dissertation for the Degree of Doctor of Philosophy in Mathematics at Stockholm University to be publicly defended on Thursday 30 May 2013 at 13:00 in Lecture hall 14, House 5, Kräftriket, Roslagsvägen 101.

Abstract

The theme of this thesis is combinatorics, complex analysis and algebraic geometry. The thesis consists of six articles divided into four parts.

Part A: Spectral properties of the Schrödinger equation

This part consists of Papers I-II, where we study a univariate Schrödinger equation with a complex polynomial potential. We prove that the set of polynomial potentials that admit solutions to the Schrödinger equation is connected, under certain boundary conditions. We also study a similar result for even polynomial potentials, where a similar result is obtained.

Part B: Graph monomials and sums of squares

In this part, consisting of Paper III, we study natural bases for the space of homogeneous, symmetric and translation-invariant polynomials in terms of multigraphs. We find all multigraphs with at most six edges that give rise to non-negative polynomials, and which of these that can be expressed as a sum of squares. Such polynomials appear naturally in connection to expressing certain non-negative polynomials as sums of squares.

Part C: Eigenvalue asymptotics of banded Toeplitz matrices

This part consists of Papers IV-V. We give a new and generalized proof of a theorem by P. Schmidt and F. Spitzer concerning asymptotics of eigenvalues of Toeplitz matrices. We also generalize the notion of eigenvalues to rectangular matrices, and partially prove the a multivariate analogue of the above.

Part D: Stretched Schur polynomials

This part consists of Paper VI, where we give a combinatorial proof that certain sequences of skew Schur polynomials satisfy linear recurrences with polynomial coefficients.

Keywords: combinatorics, Schrödinger equation, Toeplitz matrix, sums of squares, Schur polynomials.

Stockholm 2013

http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-88808

ISBN 978-91-7447-684-2

Department of Mathematics

Stockholm University, 106 91 Stockholm