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1. Introduction
Let N= {1,2,3, . . .} denote the set of positive integers.

The notion of density in N measures the relative proportion of a set with respect to all of N; it
formalizes the intuitive concept of comparative size in the positive integers. With the help of this
notion, we can turn vague statements such as “almost no integer is the sum of two squares” or “the
probability for two integers to be coprime is 6

π2 ” into meaningful mathematical theorems.

Definition 1. The lower density and upper density of a set E ⊆N are defined respectively as

d(E) = liminf
N→∞

|E∩ {1, . . . , N}|
N

and d(E) = limsup
N→∞

|E∩ {1, . . . , N}|
N

.

Observe that d(E)⩽ d(E) always. If E ⊆N is such that d(E)= d(E) then the limit

d(E) = lim
N→∞

|E∩ {1, . . . , N}|
N

exists and we call this number the density of E.

Example 2. Here are some typical examples of subsets of N and their associated densities:
• d(N)= 1;
• d(aN+b)= a−1 for all a ∈N and b ∈N∪ {0};
• d({⌊αn+β⌋ : n ∈N})=min{α−1,1} for all α> 0 and β⩾ 0;
• d({n ∈N : n is squarefree})= 6

π2 ;
• d(P)= 0, where P= {2,3,5,7,11, . . .} denotes the set of prime numbers.

Remark 3. Some of the basic properties of the lower and upper density on N include:
• (unit range). 0⩽ d(E)⩽ d(E)⩽ 1.
• (monotonicity). If D ⊆ E then d(D)⩽ d(E) and d(D)⩽ d(E).
• (sub-additivity of upper density). d(D∪E)⩽ d(D)+d(E).
• (super-additivity of lower density). If D∩E =; then d(D)+d(E)⩽ d(D∪E).
• (complement property). d(Ec)= 1−d(E) and d(Ec)= 1−d(E).
• (shift-invariance). d(E−m)= d(E) and d(E−m)= d(E), where E−m = {n ∈N : n+m ∈ E}.

In arithmetic combinatorics, it is common to think of subsets of the integers with positive density
as “large” sets, since such sets are not merely infinite but occupy a non-negligible portion of the
integers. A central question in the field can be phrased as follows:

What kinds of arithmetic structures must appear in subsets of the integers that have positive
density?

This question seeks to understand the extent to which largeness alone forces the presence of
specific arithmetic patterns. For example, do such sets necessarily contain arithmetic progressions
{a,a+d, . . . ,a+ (k−1)d}, or sumsets B+C = {b+ c : b ∈ B, c ∈ C}, or solutions to linear equations such
as x+ y= w+ z? In exploring these questions, we will uncover a rich body of research on the interplay
between density and arithmetic structure, involving numerous deep results and techniques coming
from combinatorics, number theory, and ergodic theory.
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1.1. Difference patterns in sets of positive density

Given a set E ⊆ N, we call E −E = {b− a : a,b ∈ E, a < b} the difference set of E, and we refer to
any element in E−E as a difference appearing in E. An important topic in additive combinatorics
and number theory is understanding which type of differences must occur in sets of positive density.
It turns out that sets of positive density cannot avoid certain difference patterns. A key result in
this direction is the Furstenberg–Sárközy theorem, which highlights the inevitability of polynomial
differences.

Theorem 4 (Furstenberg-Sárközy theorem, [Sár78, Fur77]). Let p be a polynomial satisfying p(N)⊆N
and p(0) = 0. If d(E) > 0, then E−E∩ {p(n) : n ∈N} ̸= ;, i.e., there exist a,b ∈ E and n ∈N such that
b−a = p(n).

An important special case of Theorem 4 is when p(n)= n2. In this case, the theorem asserts that
any subset of the natural numbers with positive upper density must contain two distinct elements
whose difference is a perfect square.

1.2. Arithmetic progressions in sets of positive density

Another foundational result in this area is Roth’s theorem on arithmetic progressions.

Theorem 5 (Roth’s theorem, [Rot53]). If d(E)> 0, then E contains a 3-term arithmetic progression
{a,a+d,a+2d}.

Roth’s theorem resolved the first nontrivial case of a conjecture posed by Erdős and Turán in
the 1930s, which asserted that any subset of the integers with positive upper density must contain
arbitrarily long arithmetic progressions. While Roth established the case of three-term progressions,
the full conjecture was ultimately proved by Endre Szemerédi in 1975, in what is now known as
Szemerédi’s theorem.

Theorem 6 (Szemerédi’s theorem, [Sze75]). If d(E)> 0, then E contains a k-term arithmetic progres-
sion for all k ⩾ 2.

Theorem 6 has been generalized in many different ways. One of the most striking results in this
direction is the following landmark theorem.

Theorem 7 (Green-Tao theorem, [GT08]). The prime numbers P contain a k-term arithmetic pro-
gression for all k ⩾ 2.

The following is a well-known conjecture in combinatorial number theory and offers a simultaneous
generalization of both Szemerédi’s theorem and the Green-Tao theorem.

Conjecture 8 (Erdős’s conjecture on arithmetic progressions). If
∑

n∈E
1
n =∞, then E contains a

k-term arithmetic progression for all k ⩾ 2.

The k = 3 case of Erdős’s conjecture on arithmetic progressions was resolved by Bloom and Sisask
in [BS21] (see also [BS23, KM23]); the claim remains open for k ⩾ 4.

In spirit, the Furstenberg-Sárközy theorem is closely related to Szemerédi’s theorem in that both
guarantee the presence of a specific arithmetic structure in sets of positive upper density. A unifying
generalization that encompasses both results is the so-called polynomial Szemerédi theorem, which
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can be stated as follows:

Theorem 9 (Polynomial Szemerédi theorem, [BL96]). Let p1, p2, . . . , pk be polynomials satisfying
pi(N)⊆N and pi(0)= 0. If d(E)> 0, then there exist a,n ∈N such that {a+ p1(n), . . . ,a+ pk(n)}⊆ E.

Configurations of the from {a+p1(n), . . . ,a+pk(n)} are often referred to as polynomial progressions,
since they represent a polynomial extension of an arithmetic progression. Observe that the case
k = 1 of Theorem 9 corresponds to the Furstenberg-Sárközy theorem, and the case pi(n) = (i−1)n,
i = 1, . . . ,k, corresponds to Szemerédi’s theorem.

1.3. Sumsets in sets of positive density

In the late 1970s and early 1980s, inspired by Szemerédi’s seminal work on arithmetic progressions
in sets of positive density, Paul Erdős asked if sets of positive density contain sumsets.

The notion of a sumset refers to two different, but closely related, concepts. First, given two sets of
non-negative integers B and C, the sumset B+C is the set of all possible pairwise sums of elements
from B and C, that is,

B+C = {b+ c : b ∈ B, c ∈ C}.

Second, given a sequence of integers b1 < b2 < b3 < . . ., its (restricted) sumset consists of all possible
sums of distinct elements from the sequence, i.e., {bi +b j : i, j ∈N, i ̸= j}.

Erdős sought to characterize the types of sets that necessarily contain infinite sumsets, a line of
inquiry that culminated in two influential conjectures. Both conjectures have since been resolved and
we state them as theorems below. We begin with the second of the two conjectures, chronologically
speaking, since it is the more accessible one.

Theorem 10 (Erdős’s 2nd sumset conjecture, [MRR19]). If d(E)> 0, then there exist two infinite sets
B,C ⊆N such that B+C ⊆ E.

Theorem 11 (Erdős’s 1st sumset conjecture, [KMRR24]). If d(E)> 0, then there exist b1 < b2 < b3 <
. . . ∈N and t ∈N such that {bi +b j : i, j ∈N, i ̸= j}⊆ E− t.

Note that Theorem 11 contains Theorem 10 as a special case.

Exercises

(1) Suppose E = { f (n) : n ∈N} where f : N→N is an increasing function. Prove that

d(E)= liminf
n→∞

n
f (n)

and d(E)= limsup
n→∞

n
f (n)

.

(2) Show that d is not additive: There exist disjoint sets E,D ⊆N such that d(D∪E)< d(D)+d(E).
(3) Show there is no probability measure on the σ-algebra of all subsets of N such that µ(aN)= a−1

holds for every a ∈N. (Hint: Show that

µ({k})⩽µ

( ⋂
p∈P>k

(N\pN)

)
= ∏

p∈P>k

(
1− 1

p

)
and use the fact that

∑
p∈P 1

p =∞.)
(4) Show that Erdős’s conjecture on arithmetic progressions implies Szemerédi’s theorem.

4



(5) Prove that if d(E)> δ then for any finite set F ⊆N there exists n ∈N such that |(n+F)∩E| > δ|F|.
(6) Let r ⩾ 3 and a1, . . . ,ar ∈Z\{0}. Show that the equation a1x1 +·· ·+arxr = 0 is density regular1 if

and only if a1 +·· ·+ar = 0.

1An equation a1x1 +·· ·+ar xr = 0 is said to be density regular if for every set E ⊆N with positive upper density there
exist distinct x1, . . . , xr ∈ E satisfying the equation.
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2. Furstenberg’s correspondence principle

2.1. Measure preserving systems

Definition 12 (Measure preserving transformation). Given a probability space (X ,A ,µ), we say that
a measurable map T : X → X preserves the measure or is a measure preserving transformation if for
every A ∈A we have µ(T−1 A)=µ(A).

Recall, the push-forward of a measure µ under a transformation T is defined via

Tµ(A)=µ(T−1 A), ∀A ∈A .

We say that the measure µ is invariant under the map T if Tµ = µ. Observe that T preserves the
measure µ (as specified in Definition 12) if and only if µ is invariant under T; the two statements
express the same property and we will use them interchangeably throughout.

The basic object of study in ergodic theory is a measure preserving system, which we now define.

Definition 13 (Measure preserving system). A measure preserving system is a quadruple (X ,A ,µ,T)
where (X ,A ,µ) is a probability space and T : X → X is a measure preserving transformation.

Here are two important examples of measure preserving systems.

Example 14 (Circle rotations). Let X = [0,1), endowed with the Borel σ-algebra A = B[0,1) and
the Lebesgue measure µ = m[0,1). Given α ∈ R we consider the map T = Tα : [0,1) → [0,1) given by
Tx = x+α mod 1. The fact that T preserves the Lebesgue measure follows from the basic properties
of Lebesgue measure.

Example 15 (The doubling map). Take (X ,A ,µ) = ([0,1),B[0,1),m[0,1)), where B[0,1) is the Borel
σ-algebra on [0,1), and m[0,1) the Lebesgue measure. Let T : [0,1) → [0,1) be the doubling map
T(x) = 2x mod 1. Let us show that this transformation preserves the measure: Given an interval
[a,b)⊆ [0,1), the pre-image T−1([a,b)) is the union of two intervals, each half the length of the original
interval:

T−1(
[a,b)

)= [
a
2

,
b
2

)
∪

[
a+1

2
,
b+1

2

)
.

This shows that the Lebesgue measure of [a,b) and T−1([a,b)) are identical. Since T−1 preserves the
measure of all intervals and since intervals generate the Borel σ-algebra on [0,1), it follows that T is
a measure-preserving transformation.

More generally, for any positive integer p the map T(x) = px mod 1 preserves the Lebesgue
measure, giving rise to a class of measure-preserving systems whose dynamical behavior is closely
related to the base-p digit expansions of the real numbers.

2.2. Poincaré’s recurrence theorem

The theory of recurrence in ergodic theory studies the return of points or sets to their original
position (or neighborhood) within measure-preserving dynamical systems. Here is the first theorem of
recurrence in ergodic theory.

Theorem 16 (Poincaré’s recurrence theorem). Let (X ,A ,µ,T) be a measure preserving system and
let A ∈A with µ(A)> 0. Then for some n ∈N we have

µ(A∩T−n A)> 0. (2.1)
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Proof. Since T is measure preserving, for any n ∈ N the set T−n A has the same measure as the
set A. Since the ambient space X has measure 1 and A, T−1 A, T−2 A, . . . is an infinite sequence
of sets with the same (positive) measure, by the pigeonhole principle there must exist i > j with
µ(T−i A∩T− j A)> 0. Letting n = i− j, we obtain

µ(A∩T−n A)=µ(
T− j(A∩T−n A)

)=µ(T−i A∩T− j A)> 0,

completing the proof.

Definition 17. Given a measure preserving system (X ,A ,µ,T), the orbit of a point x ∈ X under T is
the set OT (x)= {x,Tx,T2x,T3x, . . .}.

Proposition 18. Let X be a compact metric space (with metric dX : X × X → [0,∞)), BX the σ-
algebra of Borel sets on X , µ a Borel probability measure on X , and T : X → X a measure preserving
transformation. Then the orbit of µ-a.e. point returns arbitrarily close to its initial position, i.e.,
µ-a.e. x ∈ X satisfies infn∈N dX (x,Tnx)= 0.

Proof. Consider the set Cε = {x ∈ X : infn∈N dX (x,Tnx)⩾ ε}; we need to show that µ(
⋃
ε>0 Cε) = 0. By

way of contradiction, assume µ(
⋃
ε>0 Cε)> 0. Then, by the monotone convergence theorem, there exists

ε> 0 such that µ(Cε)> 0. Since X is a compact metric space, we can cover X using finitely many balls
of radius ε/2. Hence, there exists a ball of radius ε/2, say B, such that µ(B∩Cε)> 0. Define A = B∩Cε.
In light of Theorem 16, there exists m ∈N such that A∩T−m A is non-empty. But if y ∈ A∩T−m A
then y and Tm y are less than ε apart, because both belong to B, contradicting the assumption that
y ∈ Cε.

2.3. Sets of recurrence

Poincaré’s recurrence theorem (Theorem 16) revealed that in a measure-preserving dynamical system
almost every point returns arbitrarily close to its initial position at some time n. This naturally
leads to a deeper question: what can we say about the set of n for which this happens? How large or
structured is this set of return times? The following definition sets the stage for investigating this
question.

Definition 19. A set R ⊆N is a set of recurrence if for all measure preserving systems (X ,A ,µ,T)
and all sets A ∈A with µ(A)> 0 there exists n ∈ R with µ(A∩T−n A)> 0.

Poincaré’s recurrence theorem (Theorem 16) asserts that N is a set of recurrence. Below we collect
some other examples and non-examples of sets of recurrence (without proof).

sets of recurrence sets of non-recurrence
N Any finite set

aN aN+b for any b ̸≡ 0 mod a
{n2 : n ∈N} {n2 +1 : n ∈N}

P+ t for t ∈ {−1,1} P+ t for any t ∈Z\{±1}
D−D for any infinite D ⊆N {2n : n ∈N}

Proposition 20. Suppose X is a compact metric space (with metric dX : X × X → [0,∞)), BX is
the σ-algebra of Borel subsets of X , µ is a Borel probability measure on X , and T : X → X is a
measure preserving transformation. If R ⊆ N is a set of recurrence then µ-a.e. x ∈ X satisfies
infn∈R dX (x,Tnx)= 0.
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Proof. The proof is very similar to the proof of Proposition 18.

2.4. Intersective sets

One of the goals of additive combinatorics is to study the arithmetic and combinatorial properties of
difference sets E−E = {b−a : a,b ∈ E, b > a}. In this section, we investigate this question under the
assumption that the set E has positive density. The following definition provides a framework for this
exploration.

Definition 21. A set R ⊆N is intersective if for all sets E ⊆N with d(E)> 0, there exists n ∈ R with
n ∈ E−E.

Note that if R is an intersective set then one can remove a finite amount of elements from R and it
remains an intersective set. It follows that a set R is intersective if and only if for all sets E of positive
upper density the intersection R∩ (E−E) has infinite cardinality.

For any a ∈N the set aN= {an : n ∈N} is intersective because any set E of positive upper density
contains two numbers of the same residue class mod a. This and other examples and non-examples of
intersective sets are summarized in the following table:

intersective sets non-intersective sets
N Any finite set

aN aN+b for any b ̸≡ 0 mod a
{n2 : n ∈N} {n2 +1 : n ∈N}

P+ t for t ∈ {−1,1} P+ t for any t ∈Z\{±1}
D−D for any infinite D ⊆N {2n : n ∈N}

2.5. The correspondence principle

Furstenberg’s correspondence principle tells us that we can model any subset of the integers as an
orbit in a dynamical system.

Theorem 22 (Furstenberg’s correspondence principle). For any set E ⊆N there exist a compact metric
space X , a Borel probability measure µ on X , a continuous, measure preserving map T : X → X , a
clopen (i.e., closed and open) set A ⊆ X , and a point x ∈ X with dense orbit (i.e., OT (x)= X ) such that:

(i) µ(A)= d(E);
(ii) E = {n ∈N : Tnx ∈ A}.

Proof. Consider {0,1}Z, the space of all {0,1}-valued sequences (zn)n∈Z, which is a compact metric
space. On this space, let T denote the left-shift operator (zn)n∈N 7→ (zn+1)n∈N, that is, we shift every
element in the sequence one position to the left. Define x = 1E, where 1E ∈ {0,1}Z is the indicator
function of the set E, and take X =OT (x). Observe that T(X )⊆ X , which means we can view T as a
transformation on X . Our set A will be the set of all sequences (zn)n∈Z ∈ X with z0 = 1; this is a clopen
subset of X . Moreover, with this definition of x, T, and A, we have E = {n ∈N : Tnx ∈ A} as desired.

Finally, we need to construct a measure. We first define the finite measures

µN = 1
N

N∑
n=1

δTn1E .

We are placing a point mass on each of the points in the orbit of x = 1E — the points 1E, 1E−1, 1E−2,
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and so on — and averaging them. Choose a sequence (Nk) such that

d(E)= lim
k→∞

1
Nk

Nk∑
n=1

1E(n)= lim
k→∞

1
Nk

N∑
n=1

1E−n(0).

Such a sequence exists because d(E) is defined as the limsup of this quantity over all N, and there
must be a subsequence approaching the limsup.

When endowed with the weak-∗ topology, the space of Borel probability measures on a compact
metric space is itself a compact metric space. In particular, every sequence of measures has a
convergent subsequence. Let µ be any weak-∗ accumulation point of the sequence of measures
µNk . (Recall, a sequence of measures νn converges to ν in the weak-∗ topology if and only if for
all continuous functions f we have

∫
f dνn → ∫

f dν.) We now have our measure µ. The fact that
µ(A)= d(E) follows from the above relation and the definition of A (since δ1E−n (A) is 1 if 1E−n begins
with a 1, or equivalently if E−n contains 0, and is 0 otherwise). This completes the proof.

Theorem 23. Let R ⊆N. The following are equivalent:
(i) R is a set of recurrence.

(ii) R is an intersective set.
(iii) For all sets E ⊆N with d(E)> 0, there exists m ∈ R such that {n ∈ E : n+m ∈ E} is infinite.

Note that (iii) simply asserts that m appears infinitely often as a difference in E.

Proof of Theorem 23. Let us first prove that (ii)=⇒ (i). Assume, for contradiction, that R is not a set
of recurrence, which means there exists a measure preserving system (X ,A ,µ,T) and a measurable
set A ∈A with positive measure such that

µ(A∩T−m A)= 0, ∀m ∈ R. (2.2)

Define A′ = A\(
⋃

m∈R T−m A) and note that µ(A)=µ(A′) due to (2.2), and

A′∩T−m A′ =;, ∀m ∈ R. (2.3)

By Fatou’s lemma, we have∫
limsup

N∈N
1
N

N∑
n=1

1A′(Tnx) dµ⩾ limsup
N∈N

1
N

N∑
n=1

∫
1A′(Tnx) dµ=µ(A′)=µ(A)> 0.

This means there exists a point x ∈ X such that

limsup
N∈N

1
N

N∑
n=1

1A′(Tnx)> 0. (2.4)

If we now consider the set E = {n ∈N : Tnx ∈ A′}, then (2.4) implies d(E)> 0. Since R is an intersective
set, there exists m ∈ R with m ∈ E−E. Using the definition of E, we can thus find some n ∈N with
Tnx,Tn+mx ∈ A′. This implies that Tnx ∈ A′∩T−m A′, contradicting (2.3).

Since the implication (iii) =⇒ (ii) is immediate, it remains to prove (i) =⇒ (iii). Let E ⊆ N with
d(E)> 0 be given. By Theorem 22, there exist a compact metric space X , a Borel probability measure
µ, a measure preserving map T : X → X , a clopen set A ⊆ X , and a point x ∈ X with OT (x)= X such
that µ(A)> 0 and E = {n ∈N : Tnx ∈ A}. Since R is a set of recurrence, there exists some m ∈ R with

µ(A∩T−m A)> 0.
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In particular, A∩T−m A is not the empty set. Since A is clopen and the orbit of x is dense, there exist
infinitely many n ∈N such that Tnx ∈ A∩T−m A. Using E = {n ∈N : Tnx ∈ A}, we conclude that there
are infinitely many n for which n,n+m ∈ E, as desired.

Exercises

(2.1) Show that if R ⊆N is intersective then for every α ∈ R and every ε> 0, there exist m ∈ R and
n ∈Z such that ∣∣∣α− n

m

∣∣∣⩽ ε

m
.

(Hint: Consider the measure preserving system described in Example 14.)
(2.2) Prove that for any infinite set D ⊆N, the set of differences D−D is an intersective set.
(2.3) Suppose R ⊆N is intersective. Show that the following sets are also intersective:

(a) aR = {an : n ∈ R} for any a ∈N.
(b) R/a = {n ∈N : an ∈ R} for any a ∈N.
(c) R\F for any finite subset F ⊆ R.

(2.4) Show that the measure µ constructed in the proof of the Furstenberg’s correspondence principle is
T-invariant. (This detail was glossed over in the proof, despite being essential to its correctness.)

(2.5) Show that if R ⊆N is intersective and is decomposed as R = R1 ∪R2, then either R1 or R2 is
intersective.

(2.6) Prove the following strengthening of Poincaré’s recurrence theorem: For any measure-preserving
system (X ,A ,µ,T), any A ∈A , and any ε> 0, there exists some n ∈N such that

µ(A∩T−n A)>µ(A)2 −ε.

3. The Furstenberg-Sárközy theorem
The purpose of this section is to prove the Furstenberg-Sárközy theorem (Theorem 4). Instead of
proving the theorem directly, we will derive it from the following polynomial recurrence result.

Theorem 24 (Furstenberg’s polynomial recurrence theorem, [Fur77]). Let p be a polynomial sat-
isfying p(N) ⊆N and p(0) = 0. For any measure preserving system (X ,A ,µ,T) and any A ∈A with
µ(A)> 0 there exist n ∈N such that µ(A∩T−p(n) A)> 0.

3.1. The Furstenberg-Sárközy theorem – equivalent forms

Proposition 25. Let p be a polynomial satisfying p(N)⊆N and p(0)= 0. The following are equivalent:
(i) (Furstenberg-Sárközy theorem – infinitary version). Any E ⊆ N with positive upper density

contains {a,a+ p(n)} for some a,n ∈N.
(ii) (Furstenberg-Sárközy theorem – finitary version). For every δ> 0 there exists N(δ, p) ∈N such

that if N ⩾ N(δ) then any set E ⊆ {1, . . . , N} with |E|⩾ δN contains {a,a+ p(n)} for some a,n ∈N.
(iii) (Furstenberg’s polynomial recurrence theorem). For any measure preserving system (X ,A ,µ,T)

and any A ∈A with µ(A)> 0 there exist n ∈N such that µ(A∩T−p(n) A)> 0.

Proof. Note that (i) says {p(n) : n ∈ N} is an intersective set and (iii) says {p(n) : n ∈ N} is a set of
recurrence. By Theorem 23, these two assertions are equivalent.

It remains to prove the equivalence (i) ⇐⇒ (ii). Note that the direction (ii) =⇒ (i) is immediate.

10



For the reverse direction, we use a proof by contradiction. Assume that (ii) is false, which means
there exist δ > 0 and an increasing sequence N1 < N2 < . . . ∈ N such that for every i ∈ N there is a
set E i ⊆ {1, . . . , Ni} with |E i|⩾ δNi admitting no arrangement of the from {a,a+ p(n)} for a,n ∈ N.
By replacing (Ni)i∈N with a subsequence of itself, we can assume without loss of generality that
Ni+1 > 4Ni. Define a new set E via

E = ⋃
i∈N

(Ni +E i).

A straightforward calculation reveals that

d(E)= limsup
N→∞

|E∩ {1, . . . , N}|
N

⩾ limsup
i→∞

|E∩ {1, . . . ,2Ni}|
2Ni

⩾ limsup
i→∞

|(Ni +E i)|
2Ni

= limsup
i→∞

|E i|
2Ni

⩾
δ

2
.

By (i), the set {p(n) : n ∈N} is intersective, which in view of Theorem 23 means that there exists some
m ∈ N such that {n ∈ E : n+ p(m) ∈ E} is infinite. In particular, we can find n,m ∈ N with n > p(m)
and such that n,n+ p(m) ∈ E. Take i ∈N with n ∈ Ni +E i. Since Ni+1 > 4Ni, the smallest element
of Ni+1 +E i+1 is at least twice as large as the largest element in Ni +E i. So from n ∈ Ni +E i and
n > p(m) it follows that n+ p(m) ∈ Ni +E i. This means that p(m) appears as a difference in E i,
yielding a contradiction to the assumption that E i does not contain differences of this shape.

3.2. van der Corput’s difference theorem

Theorem 26 (van der Corput’s difference theorem). Let H be a Hilbert space with inner product
〈., .〉 and norm ∥.∥, and let (xn)∞n=1 be a bounded sequence taking values in H . If

limsup
H→∞

limsup
N→∞

∣∣∣∣ 1
H

H∑
h=1

1
N

N∑
n=1

〈xn+h, xn〉
∣∣∣∣= 0 (3.1)

then

lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

xn

∥∥∥∥= 0.

Proof. First, observe that we have

limsup
D→∞

limsup
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

xn − 1
D

D∑
d=1

1
N

N∑
n=1

xn+d

∥∥∥∥∥= 0.

Hence it suffices to show that

limsup
D→∞

limsup
N→∞

∥∥∥∥∥ 1
D

D∑
d=1

1
N

N∑
n=1

xn+d

∥∥∥∥∥= 0.
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Using the Cauchy-Schwarz inequality we have

limsup
D→∞

limsup
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

1
D

D∑
d=1

xn+d

∥∥∥∥∥
2

⩽ limsup
D→∞

limsup
N→∞

1
N

N∑
n=1

∥∥∥∥∥ 1
D

D∑
d=1

xn+d

∥∥∥∥∥
2

= limsup
D→∞

limsup
N→∞

1
N

N∑
n=1

1
D2

D∑
d1,d2=1

〈xn+d1 , xn+d2〉

⩽ limsup
D→∞

limsup
N→∞

∣∣∣∣ 1
D2

D∑
d=1

2(D−d)
(

1
N

N∑
n=1

〈xn, xn+d〉
)∣∣∣∣.

Note that for any sequence y1, . . . , yD ,

1
D2

D∑
d=1

2(D−d)yd = 1
D

D∑
H=1

(
1
H

H−1∑
h=1

yh

)
.

All the above combined gives

limsup
N→∞

∥∥∥∥ 1
N

N∑
n=1

xn

∥∥∥∥⩽ limsup
D→∞

lim
N→∞

∣∣∣∣ 1
D

D∑
H=1

(
1
H

H−1∑
h=1

1
N

N∑
n=1

〈xn, xn+h〉
)∣∣∣∣

⩽ limsup
D→∞

1
D

D∑
H=1

limsup
N→∞

∣∣∣∣ 1
H

H−1∑
h=1

1
N

N∑
n=1

〈xn, xn+h〉
∣∣∣∣

⩽ limsup
H→∞

∣∣∣∣ 1
H

H−1∑
h=1

1
N

N∑
n=1

〈xn, xn+h〉
∣∣∣∣.

The claim follows.

3.3. The ergodic theorem

Given a measure-preserving system (X ,A ,µ,T) and a function f ∈ L2(X ,A ,µ), the notation T f
denotes the composition f ◦T, which is also in L2(X ,A ,µ) due to the measure-preserving property of
T. This defines a linear operator T : L2(X ,A ,µ)→ L2(X ,A ,µ), called the Koopman operator, acting
as an isometry.

Definition 27. The system (X ,A ,µ,T) is ergodic if the only functions f ∈ L2(X ,A ,µ) satisfying
T f = f are those that are constant almost everywhere.

We denote by Hinv the space of almost everywhere invariant functions in L2(X ,A ,µ),

Hinv = { f ∈ L2(X ,A ,µ) : T f = f }.

In view of Definition 27, the system (X ,A ,µ,T) is ergodic if and only if Hinv consists only of almost
everywhere constant functions.

Theorem 28 (Mean ergodic theorem). Let (X ,A ,µ,T) be a measure preserving system. For every
f ∈ L2(X ,A ,µ) we have

lim
N→∞

1
N

N−1∑
n=0

Un
T f = finv in L2-norm, (3.2)

where finv is the orthogonal projection of f onto Hinv.
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Remark 29. Note that if (X ,A ,µ,T) is an ergodic system then finv =
∫

X f dµ and hence (3.2) becomes

lim
N→∞

1
N

N−1∑
n=0

Tn f︸ ︷︷ ︸
time average

=
∫

f dµ︸ ︷︷ ︸
space average

in L2(X ,A ,µ).

We say that L2(X ,A ,µ) is the orthogonal direct sum of H1 and H2, and write L2(X ,A ,µ) =
H1 ⊕H2, if H1 and H2 are closed subspaces of H satisfying:

• 〈 f1, f2〉 = 0 whenever f1 ∈H1 and f2 ∈H2, and
• for every f ∈H , there exist f1 ∈H1 and f2 ∈H2 such that f = f1 + f2.

Note that in this case, f1 and f2 are uniquely determined by f . In fact, f1 equals the orthogonal
projection of f onto the subspace H1, whereas f2 is the orthogonal projection of f onto H2.

The following is an immediate corollary of the mean ergodic theorem.

Corollary 30. Let (X ,A ,µ,T) be a measure preserving system. Then L2(X ,A ,µ) = Hinv ⊕Herg,
where Hinv is as defined above and

Herg =
{

f ∈ L2(X ,A ,µ) : lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

Tn f
∥∥∥∥

L2
= 0

}
.

3.4. Totally ergodic systems

Definition 31. A measure preserving system (X ,A ,µ,T) is totally ergodic if for every m ∈ N, the
measure preserving system (X ,B,µ,Tm) is ergodic.

Theorem 32. Let (X ,A ,µ,T) be a measure preserving system. Then (X ,A ,µ,T) is totally ergodic if
and only if for all non-constant polynomials p with p(N)⊆N and any f ∈ L2(X ,A ,µ) we have

lim
N→∞

1
N

N−1∑
n=0

T p(n) f︸ ︷︷ ︸
polynomial time average

=
∫

f dµ .︸ ︷︷ ︸
space average

in L2(X ,A ,µ). (3.3)

Proof. If the system is not totally ergodic, then there exists q ∈N and a non-constant f ∈ L2(X ,A ,µ)
such that Tq f = f . Thus

lim
N→∞

1
N

N∑
n=1

T p(n) f = f ̸=
∫

X
f dµ

contradicting (3.3).
To prove the converse direction, let (X ,B,µ,T) be totally ergodic and let f ∈ L2(X ,A ,µ) be

arbitrary. We proceed by induction on the degree of p. If p(n)= qn+ r is a linear polynomial, then the
result follows from the ergodic theorem applied to the ergodic transformation Tq. So assume that
p has degree at least 2. Eq. (3.3) holds for f if and only if it holds for f − c where c is a constant;
therefore, after subtracting

∫
X f dµ from f , we can assume that

∫
X f dµ= 0. Letting xn = T p(n) f , we

need to show that limN→∞ 1
N

∑N
n=1 xn = 0, and to this end we will invoke the van der Corput difference

theorem (Theorem 26) applied to the Hilbert space L2(X ,A ,µ). Fixing d ∈N we can compute

〈xn+d, xn〉 =
∫

X
T p(n+d) f ·T p(n) f dµ=

∫
X

T p(n+d)−p(n) f · f dµ=
〈

T p(n+d)−p(n) f , f
〉

.

Since n 7→ p(n+ d)− p(n) is a polynomial of degree smaller than the degree of p, we can use the
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induction hypothesis (together with the fact that convergence in L2(X ,A ,µ) implies convergence in
the weak topology) to conclude

lim
N→∞

1
N

N∑
n=1

〈xn+d, xn〉 =
〈

lim
N→∞

1
N

N∑
n=1

T p(n+d)−p(n) f , f

〉
= 0.

This establishes the hypothesis (3.1) of the van der Corput’s difference theorem, so we conclude that
limN→∞ 1

N
∑N

n=1 xn = 0, as desired.

3.5. Proof of the Furstenberg’s polynomial recurrence theorem

Theorem 33 (cf. [Ber96, p. 14]). Let (X ,A ,µ,T) be a measure preserving system. Then L2(X ,A ,µ)=
Hrat ⊕Htoterg, where

Hrat =
{
f ∈ L2(X ,A ,µ) : ∃q ∈N, Tq f = f

}
,

Htoterg =
{

f ∈ L2(X ,A ,µ) :∀q ∈N, lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

Tqn f
∥∥∥∥

L2
= 0

}
.

Proof. For every q ∈N define

Hinv,q = { f ∈ L2(X ,A ,µ) : Tq f = f } and Herg,q =
{

f ∈ L2(X ,A ,µ) : lim
N→∞

∥∥∥∥ 1
N

N∑
n=1

Tqn f
∥∥∥∥

L2
= 0

}
.

By Corollary 30, we have L2(X ,A ,µ)=Hinv,q ⊕Herg,q for all q ∈N. Therefore,

L2(X ,A ,µ)= ⋃
q∈N

Hinv,q ⊕
⋂
q∈N

Herg,q.

It is now straightforward to verify that Hrat =⋃
q∈NHinv,q and Htoterg =⋂

q∈NHerg,q.

Proof of Theorem 24. Using Theorem 33, we can decompose 1A = f + g with f ∈Hrat and g ∈Htoterg.
Since Hrat contains the constant functions, using the Cauchy-Schwarz inequality we have 〈1A, f 〉 =
∥ f ∥2

L2 ⩾ 〈 f ,1〉2 =µ(A)2. Find h ∈Hrat such that Tqh = h for some q ∈N, and such that ∥ f −h∥L2 < ε/2.
In particular it follows that 〈1A,h〉 >µ(A)2 −ε/2.

Note that T p(qn)h = h for all n ∈N. As in the proof of Theorem 32, an application of the van der
Corput difference theorem implies that

lim
N→∞

1
N

N∑
n=1

T p(qn) g = 0.

Finally, we have

lim
N→∞

1
N

N∑
n=1

µ(A∩T−p(qn) A) = lim
N→∞

1
N

N∑
n=1

〈
1A,h+T p(qn)( f −h)+T p(qn) g

〉
=

〈
1A,h+ lim

N→∞
1
N

N∑
n=1

T p(qn)( f −h)+T p(qn) g

〉
⩾ 〈1A,h〉−ε/2
⩾ µ(A)2 −ε.
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4. Roth’s theorem
In this section, we give an ergodic-theoretic proof of Roth’s theorem (Theorem 5). The next result is an
ergodic theorem from which Roth’s theorem can be derived. It is, in fact, equivalent to Roth’s theorem,
and can be viewed as a “degree-two” generalization of Poincaré’s recurrence theorem.

Theorem 34 (Furstenberg’s double recurrence theorem, [Fur77]). For any measure preserving system
(X ,A ,µ,T) and any A ∈A with µ(A)> 0 there exist n ∈N such that µ(A∩T−n A∩T−2n A)> 0.

4.1. Roth’s theorem – equivalent forms

Proposition 35. The following are equivalent:
(i) (Roth’s theorem – infinitary version). Any E ⊆N with positive upper density contains a 3-term

arithmetic progressions.
(ii) (Roth’s theorem – finitary version). For every δ> 0 there exists N(δ) ∈N such that if N ⩾ N(δ)

then any set E ⊆ {1, . . . , N} with |E|⩾ δN contains a 3-term arithmetic progression.
(iii) (Furstenberg’s double recurrence theorem). For any measure preserving system (X ,A ,µ,T) and

any A ∈A with µ(A)> 0 there exist n ∈N such that µ(A∩T−n A∩T−2n A)> 0.

The proof of Proposition 35 is very similar to the proof of Proposition 25 and omitted.

4.2. Weak mixing systems

Definition 36. A measure preserving system (X ,A ,µ,T) is called weak mixing if for all f , g ∈
L2(X ,A ,µ) we have

lim
N→∞

1
N

N∑
n=1

∣∣∣∣〈Tn f , g〉−
(∫

f dµ

)
·
(∫

g dµ

)∣∣∣∣= 0.

Theorem 37. Let (X ,A ,µ,T) be a weakly mixing measure preserving system. Then for any f , g ∈
L2(X ,A ,µ) we have

lim
N→∞

1
N

N∑
n=1

Tn f T2n g︸ ︷︷ ︸
degree−two time average

=
(∫

f dµ

)
·
(∫

g dµ

)
︸ ︷︷ ︸

space average

, in L2(X ,A ,µ).

Proof. By replacing g with g− ∫
X g dµ, we can assume without loss of generality that

∫
X g dµ = 0.

With the goal of using Theorem 26, let xn = Tn f ·T2n g. We have

〈xn+h, xn〉 =
∫

X
Tn+h f ·T2n+2h g ·Tn f ·T2n g dµ=

∫
X

(
f ·Th f

) ·Tn(
g ·T2h g

)
dµ.

Using ergodicity and taking an average in n we get

lim
N→∞

1
N

N∑
n=1

〈xn+h, xn〉 =
(∫

X
f ·Th f dµ

)
·
(∫

X
g ·T2h g dµ

)
.

Thus, we have

lim
H→∞

lim
N→∞

∣∣∣∣ 1
H

H∑
h=1

1
N

N∑
n=1

〈xn+h, xn〉
∣∣∣∣= lim

H→∞

∣∣∣∣ 1
H

H∑
h=1

(∫
X

f ·Th f dµ

)
·
(∫

X
g ·T2h g dµ

)∣∣∣∣
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⩽ ∥ f ∥2
L2 ·

(
lim

H→∞
1
H

H∑
h=1

∣∣∣∣∫
X

g ·T2h g dµ

∣∣∣∣).

The last expression is 0 because of Definition 36.

4.3. The Jacobs–de Leeuw–Glicksberg decomposition

Definition 38. Let (X ,A ,µ,T) be a measure preserving system and let f ∈ L2(X ,A ,µ). We say that
f is a weak mixing function if for all g ∈ L2(X ,A ,µ) one has

lim
N→∞

1
N

N∑
n=1

∣∣〈Tn f , g〉∣∣= 0.

Notice that a weak-mixing function f always satisfies
∫

f dµ = 0. Moreover, a system is weak
mixing if and only if every function f with

∫
f dµ= 0 is a weak-mixing function.

Definition 39. Given a measure preserving system (X ,A ,µ,T), a non-zero function f ∈ L2(X ,A ,µ)
is an eigenfunction if there exists a constant λ, called the eigenvalue, such that T f =λ f . The set of all
eigenvalues of (X ,A ,µ,T) is called the point-spectrum of T and denoted by σ(T).

Since T is an isometry, all its eigenvalues must have absolute value 1. In other words, for any
measure preserving system (X ,A ,µ,T) we have σ(T)⊆S1.

Theorem 40 (Jacobs–de Leeuw–Glicksberg decomposition). Let (X ,A ,µ,T) be a measure preserving
system. Then L2(X ,A ,µ)=Hc ⊕Hwm, where

Hc = span
{
f ∈ L2(X ,A ,µ) : f is an eigenfunction

}
,

Hwm = {
f ∈ L2(X ,A ,µ) : f is a weak mixing function

}
.

Sketch of Proof. We provide here only a sketch of the proof; for a complete argument see [EFHN15,
Section 16.3].

Fix f ∈ L2(A,A ,µ). Let H f = span{Tn f : n ∈N∪ {0}}, which is the smallest closed and T-invariant
subspace of L2(A,A ,µ) containing f . By the spectral theorem, there exists a finite Borel measure ν
on S1 (called the spectral measure of f ) and an isometric isomorphism Φ : H f → L2(S1,BS1 ,ν) such
that for all g ∈ H f we have

Φ(Tn g)(z)= z ·Φ(g)(z), for ν-a.e. z ∈S1.

We can split ν into its discrete and continuous components, i.e., ν= νdiscrete +νcontinuous. This induces
a splitting

L2(S1,BS1 ,ν)= L2(S1,BS1 ,νdiscrete)⊕L2(S1,BS1 ,νcontinuous).

Through the isomorphism Φ, this induces a splitting

H f = Hc, f ⊕Hwm, f ,

where Φ(Hc, f ) = L2(S1,BS1 ,νdiscrete) and Φ(Hwm, f ) = L2(S1,BS1 ,νcontinuous). In particular, we can
write f uniquely as

f = fc + fwm,

where fc ∈ Hc, f and fwm ∈ Hwm, f . Note that the spectral measure associated to fc is discrete and the
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spectral measure associated to fwm is continuous. One can then show that any element in L2(A,A ,µ)
whose spectral measure is discrete belongs to Hc (using elementary methods) and any element in
L2(A,A ,µ) whose spectral measure is continuous belongs to Hwm (using Wiener’s lemma). This
shows that Hc, f ⊆Hc as well as Hwm, f ⊆Hwm.

Remark 41. Functions in Hc are often refereed to as compact functions, because (through some
work) one can show that Hc are exactly those functions f whose orbit closure {Tn f : n ∈N∪ {0}} is
a compact subset of L2(X ,A ,µ) (with respect to the norm-topology). From this characterization, it
also follows that if f ∈ L2(X ,A ,µ) satisfies a ⩽ f (x) ⩽ b for µ-a.e. x ∈ X , where a ⩽ bR, then fc, the
orthogonal projection of f onto Hc, also has a⩽ f (x)⩽ b for µ-a.e. x ∈ X .

4.4. Proof of Furstenberg’s double recurrence theorem

Lemma 42. Let (X ,A ,µ,T) be a measure preserving system and let f , g ∈ L2(X ,A ,µ). If at least one
of the functions f or g is weakly mixing, then we have

lim
N→∞

1
N

N∑
n=1

Tn f ·T2n g = 0, in L2(X ,A ,µ).

The proof of Lemma 42 follows the same arguments as the proof of Theorem 37.

Lemma 43. Let (X ,A ,µ,T) be a measure preserving system. Then for any fc ∈Hc with fc(x) ∈ [0,1]
for µ-a.e. x ∈ X and

∫
fc dµ> 0 we have

lim
N→∞

1
N

N∑
n=1

∫
fc ·Tn fc ·T2n fc dµ> 0.

Proof. Given ε> 0, we can find r ∈N and eigenfunctions g1, . . . , gr such that if g = g1 + . . .+ gr then

∥ fc − g∥L2 ⩽ ε.

Let λ1, . . . ,λr ∈S1 denote the eigenvalues corresponding to the eigenfunctions g1, . . . , gr. Let B ⊆N be
the Bohr set

B = {
n ∈N : |λn

i −1|⩽ ε∥g i∥L2 r−1, i = 1, . . . , r
}
.

Then for any n ∈ B we have

∥Tn fc − fc∥L2 ⩽ ∥Tn g− g∥L2 +2ε

⩽ ∥(Tn g1 − g1)∥L2 + . . .+∥(Tn gr − gr)∥L2 +2ε

= |λn
1 −1| · ∥g1∥L2 + . . .+|λn

r −1| · ∥gr∥L2 +2ε

⩽ 3ε.

This also implies that ∥T2n fc − fc∥L2 ⩽ 6ε. Thus, we have

lim
N→∞

1
N

N∑
n=1

∫
fc ·Tn fc ·T2n fc dµ⩾ lim

N→∞
1
N

N∑
n=1

1B(n)
∫

fc ·Tn fc ·T2n fc dµ

⩾ lim
N→∞

1
N

N∑
n=1

1B(n)
(∫

f 3
c dµ−9ε

)
⩾ d(B) ·

(∫
f 3
c dµ−9ε

)
.
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If ε is sufficiently small, then this last quantity is positive and we are done.

Proof of Theorem 34. Using Theorem 40, we can decompose 1A = fc+ fwm with fc ∈Hc and fwm ∈Hwm.
Note that since 1A(x) ∈ [0,1], we have fc(x) ∈ [0,1] for µ-a.e. x ∈ X (cf. Remark 41). Moreover, as
〈1A,1〉 = 〈 fc,1〉, we have

∫
X fc dµ> 0. Using Lemma 42, we have

lim
N→∞

1
N

N∑
n=1

µ(A∩T−n A∩T−2n A)= lim
N→∞

1
N

N∑
n=1

∫
1A ·Tn1A ·T2n1A dµ

= lim
N→∞

1
N

N∑
n=1

∫
1A ·Tn fc ·T2n fc dµ.

Note that Tn fc ·T2n fc ∈Hc and hence it is orthogonal to fwm. This implies that

lim
N→∞

1
N

N∑
n=1

∫
1A ·Tn fc ·T2n fc dµ= lim

N→∞
1
N

N∑
n=1

∫
fc ·Tn fc ·T2n fc dµ.

The claim now follows from Lemma 43.

5. Sumsets in sets of positive density
In this section, we present a proof of Theorem 10.

5.1. Improved correspondence principle

We say a measure preserving system (X ,A ,µ,T), where X is a compact metric space and T is
a continuous map on X , has continuous eigenfunctions if every eigenfunction has a continuous
representative in its L2 equivalency class.

Lemma 44. One can assume without loss of generality that the system obtained in Furstenberg’s
correspondence principle (Theorem 22) is ergodic and has continuous eigenfunctions.

The proof of Lemma 44 is omitted. A proof can be obtained by combining [KMRR24, Proposition 2.3]
and [KMRR24, Proposition 3.1].

5.2. Reduction to a dynamical statement

In what follows, we say a family of sets has the large intersection property if any finite sub-family
intersects in a set that has infinite cardinality.

Lemma 45. Let E ⊆N. Then E contains B+C for some infinite B,C ⊆N if and only if there exists an
increasing sequence of positive integers (si)i∈N such that

1L(n)= lim
i→∞

1E(n+ si)

exists for all n ∈N, and the family of sets (L∩ (E− si))i∈N has the large intersection property.

Proof. First, suppose there is a sequence (si)i∈N such that 1L(n)= limi→∞1E(n+ si) exists and (L∩
(E− si))i∈N has the large intersection property. We can use this to inductively construct sequences
(bi)i∈N and (c j) j∈N with

bi + c j ∈ E, ∀i, j ∈N.
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Take b1 = s1 and let c1 be any element in L∩ (E−b1)= L∩ (E− s1). If c1, . . . , cn ∈ L and b1, . . . ,bn ∈
{si : i ∈N} have already been found, then let cn+1 be any element in

n⋂
i=1

(
L∩ (E−bi)

)
(5.1)

that satisfies cn+1 > cn; such an element exists because b1, . . . ,bn ∈ {si : i ∈ N} and hence the inter-
section in (5.1) has infinite cardinality by the large intersection property. Since c1, . . . , cn+1 ∈ L we
have

1= 1L(c j)= lim
i→∞

1E(c j + si), j = 1, . . . ,n+1.

Therefore c j + si ∈ E for all but finitely many i ∈ N. This allows us to find some bn+1 ∈ {si : i ∈ N}
for which bn+1 > bn and c j + bn+1 ∈ E for all j = 1, . . . ,n+1. It is now straightforward to verify that
bi + c j ∈ E for all i, j ∈N.

For the prove of the reverse direction, assume we have two infinite sequences (bi)i∈N and (c j) j∈N
such that

bi + c j ∈ E, ∀i, j ∈N.

By refining (bi)i∈N if necessary, we can assume that

1L(n)= lim
i→∞

1E(n+bi)

exists for all n ∈N. Then, since C = {c j : j ∈N} is a subset of L∩ (E−bi) for all i ∈N, the family of sets
(L∩ (E−bi))i∈N has the large intersection property.

Here is a dynamical result from which Theorem 10 follows.

Theorem 46. Let X be a compact metric space and T : X → X a continuous map. Let µ be a Borel
probability measure on X and suppose (X ,A ,µ,T) is ergodic and has continuous eigenfunctions. Let
x ∈ X be a point with a dense orbit. Then for any clopen set A ⊆ X with µ(A)> 0 there exist a point
y ∈ X , a sequence s1 < s2 < . . . ∈N, and a Borel probability measure λ on X × X such that

(i) Tsi x → y as i →∞;
(ii) λ is supported on the orbit closure of (x, y) under T ×T;

(iii) for any k ∈N we have λ
((

T−s1 A∩ . . .∩T−sk A
)× A

)> 0.

Proof that Theorem 46 implies Theorem 10. Suppose E ⊆ N has positive upper density. By Theo-
rem 22, there exist a compact metric space X , a Borel probability measure µ on X , a continuous
measure preserving transformation T : X → X , a point x ∈ X with dense orbit, and a clopen set A ⊆ X
such that µ(A)⩾ d(E) and E = {n ∈N : Tnx ∈ A}. Let A denote the Borel σ-algebra on X . In view of
Lemma 44, we can assume without loss of generality that (X ,A ,µ,T) is ergodic and has continuous
eigenfunctions. Since all the prerequisites of Theorem 46 are met, there exist a point y ∈ X , a sequence
s1 < s2 < . . . ∈N, and a Borel probability measure λ on X ×X so that (i) – (iii) are satisfied. Now define
L = {n ∈N : Tn y ∈ A}. Since Tsi x → y as i →∞ we have

1L(n)= 1A(Tn y)

= lim
i→∞

1A(Tn+si x)

= lim
i→∞

1E(n+ si).
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Moreover, for any k ∈N,

(L∩ (E− s1))∩ . . .∩ (L∩ (E− sk))

= (
(E− s1)∩ . . .∩ (E− sk)

)∩L

= {
n ∈N : (T ×T)n(x, y) ∈ (

T−s1 A∩ . . .∩T−sk A
)× A

}
.

Since A is a clopen set, λ is supported on the orbit closure of (x, y), and λ
((

T−s1 A∩. . .∩T−sk A
)×A

)> 0,
we conclude that the set of n for which (T ×T)n(x, y) belongs to

(
T−s1 A∩ . . .∩T−sk A

)× A is infinite. It
follows that the family of sets (L∩ (E− si))i∈N has the large intersection property. By Lemma 45, E
contains B+C for some infinite B,C ⊆N as desired.

5.3. Proof of Theorem 46

It remains to prove Theorem 46.

Proof of Theorem 46. Let (Ik)k∈N be a sequence of intervals in N such that x is generic for µ along
(Ik)k∈N; such a sequence exists because the orbit of x is dense in X . By replacing (Ik)k∈N with a
subsequence of itself if necessary, we can assume without loss of generality that µ-almost every point
in X is generic for µ along (Ik)k∈N. Since supp(µ), the topological support of µ, has full measure, there
exists at least one point y ∈ supp(µ) that is generic for µ along (Ik)k∈N. Further refining (Ik)k∈N if
necessary, we can assume that (x, y) is generic along (Ik)k∈N with respect to the transformation T ×T
for a measure λ on X × X .

Using Theorem 40, we can write

1A = fc + fwm

for fc ∈Hc and fwm ∈Hwm. For convenience, write fc,1 = fc⊗1 and fc,2 = 1⊗ fc. We make the following
claim.

Claim 1. For all δ> 0 there exists η(δ)> 0 such that d(Tsx, y)< η(δ) implies ∥Ts fc,1 − fc,2∥L2(λ) ⩽ δ.

Proof of Claim 1. Suppose δ > 0 is given. Since fc ∈ Hc, we know that fc can be approximated by
eigenfuncitons. In particular, there exist eigenfunctions g1, . . . , gr such that if g = g1 + . . .+ gr then
∥g− fc∥L2 ⩽ δ/3. Next, we choose η(δ)> 0 sufficiently small such that |g i(y)− g i(z)|⩽ δ/3r whenever
d(z, y)< η(δ); this is possible because g i is a continuous function on a compact space. Since g i is an
eigenfunction, we additionally obtain supn∈N |g i(Tn y)− g i(Tnz)|⩽ δ/3r whenever d(z, y)< η(δ), which
implies

sup
n∈N

|g(Tn y)− g(Tnz)|⩽ δ/3 whenever d(z, y)< η(δ).

It follows that for all s ∈Nwith d(Tsx, y)< η(δ) we have supn∈N |g(Tn+sx)−g(Tn y)|⩽ δ/3. By denseness
of (Tnx,Tn y), it follows that

∥Ts fc,1 − fc,2∥L2(λ) ⩽ ∥(Ts g⊗1)− (1⊗ g)∥L2(λ) +
2δ
3

⩽ sup
n∈N

|g(Tn+sx)− g(Tn y)|+ 2δ
3

⩽ δ,

as desired. △
We are left with finding a sequence s1 < s2 < . . . ∈N such that Tsi x → y as i →∞ and

λ
((

T−s1 A∩ . . .∩T−sk A
)× A

)
> 0 (5.2)
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for all k ∈ N. We will build this sequence by induction on k. For convenience write A1 = A × X ,
A2 = X × A, fwm,1 = fwm ⊗1, and fwm,2 = 1⊗ fwm. Then (5.2) can be rewritten as

λ
(
A2 ∩T−s1 A1 ∩ . . .∩T−sk A1

)
> 0. (5.3)

Suppose s1 < . . . < sk for which (5.3) is satisfied have already been found, i.e., the set Y :=
A2 ∩ (T ×T)−s1 A1 ∩ . . .∩ (T ×T)−sk A1 satisfies λ(Y )> 0. (If we haven’t found any si yet, let k = 0 and
Y = A2.) Our goal is to find sk+1.

Claim 2. We have 〈1Y , fc,2〉 > 0.

Proof of Claim 2. Let P : L2(X × X ,A ⊗A ,λ)→ L2(X × X ,A ⊗A ,λ) denote the orthogonal projection
onto the subspace 1⊗Hc = {1⊗ f : f ∈Hc}. Note that

1A2 = 1⊗1A = 1⊗ fc + 1⊗ fwm = fc,2 + fwm,2,

which shows that fc,2 = P1A2 . Since Y ⊆ A2, we have 0⩽ 1Y ⩽ 1A2 . It follows that P1Y ⩽ P1A2 = fc,2
and hence

〈1Y , fc,2〉 = 〈P1Y , fc,2〉⩾ 〈P1Y , P1Y 〉 = ∥∥P1Y
∥∥2

L2(λ).

But
∥∥P1Y

∥∥2
L2(λ) > 0 because λ(Y )> 0, finishing the proof of Claim 2. △

Now take δ := 1
3 〈1Y , fc,2〉 and let V := {s ∈N : d(Tsx, y)<min{η(δ),2−k}}, where η(δ) is as in Claim 1.

Also, take D := {s ∈ N : |〈Ts fwm,1,1Y 〉| < δ}. Since y ∈ supp(µ) and x is generic for µ along (Ik)k∈N,
the set V has positive density with respect to (Ik)k∈N. Moreover, since fwm,1 is weak mixing (in
L2(X × X ,A ⊗A ,λ)) we conclude that the set D has full density with respect to (Ik)k∈N. This implies
that the sets D and V intersect in an infinite set; let sk+1 be any element in this intersection with
sk+1 > sk. It follows that

〈1Y , Tsk+11A1〉 = 〈1Y , Tsk+1 fc,1〉+〈1Y , Tsk+1 fwm,1〉
⩾ 〈1Y , fc,2〉−2δ

> 0.

Also, since we ensured that d(Tsk+1 x, y)< 2−k, we end up with a sequence s1 < s2 < . . . that satisfies
Tsi x → y as i →∞. This completes the proof.
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conjecture, Commun. Am. Math. Soc. 4 (2024), 480–494. MR 4780876. https://doi.org/
10.1090/cams/34.

[MRR19] J. MOREIRA, F. K. RICHTER, and D. ROBERTSON, A proof of a sumset conjecture of Erdős,
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