Lecture 2: Splitting of separatrices Master Class KTH, Stockholm

Tere M. Seara

Universitat Politecnica de Catalunya

May 20- 24 2024

Tere M-Seara (UPC)

May 20- 24 2024 1/31

590

The case of one and a half degrees of freedom: the Melnikov method

Let us consider a Hamiltonian with $1 + \frac{1}{2}$ degrees of freedom with 2π -periodic time dependence:

$$H(p,q,t;\mu) = H_0(p,q) + \mu H_1(p,q,t;\mu),$$

where $H_0(p,q) = P(p,q)$ is a pendulum: $P(p,q) = \frac{1}{2}p^2 + V(q)$. Associated differential equations:

$$\dot{x}=f(x,t;\mu)=J
abla H(x,t;\mu)=f_0(x)+\mu f_1(x,t;\mu),\quad x=(q,p),t\in\mathbb{T}$$

with:

$$f_0(x)=J
abla H_0(x), \quad f_1(x,t;\mu)=J
abla H_1(x,t;\mu), \quad x=(q,p), t\in\mathbb{T}$$

and denote by $\Phi(t; \theta_0, x_0; \mu)$ the general solution such that $\Phi(\theta_0; \theta_0, x_0; \mu) = x_0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The unperturbed system

Observe that, for $\mu = 0$, we have: $\Phi(t; \theta_0, x_0; 0) = \varphi(t - \theta_0, x_0)$, where $\varphi(t, x)$ is the flow of

$$\dot{x} = f_0(x) = J \nabla H_0(x)$$
, such that $\varphi(0, x) = x$.

Assumptions:

- H₀(p,q) = P(p,q) is a pendulum: P(p,q) = ½p² + V(q), with V(q) 2π-periodic with a unique non-degenerate maximum, say at q = 0 and take, for instance, V(0) = 0. Therefore, x* = (0,0) is and equilibrium of saddle type of x = f₀(x), that is, the eigenvalues of Df₀(x*) are λ₁ = λ < 0 and λ₂ = −λ > 0.
- One branch of the stable and unstable manifolds of x* coincide along a separatrix Γ included in P⁻¹(0) = {(q, p), p²/2 + V(q) = 0}.

•
$$f_1(x, t+2\pi) = f_1(x, t)$$

We want to study what happens with the critical point x^* and its stable and unstable manifolds for $\mu > 0$ small.

Tere M-Seara (UPC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Unperturbed system

The dynamics of $\dot{x} = f_0(x), x \in \mathbb{R}^2$

- We have a critical point at x^* with a homoclinic orbit Γ .
- $x_h(t)$ is a parameterizaton of the homoclinic orbit Γ such that: $\dot{x}_h(t) = f_0(x_h(t))$ and $x_h(t) \to x^*$ as $t \to \pm \infty$.
- This gives us a parameterizaton of the homoclinic manifold (curve)

 $\Gamma = \{x = x_h(v), v \in \mathbb{R}\} \subset W^u(x^*) \cap W^s(x^*)$

which satisfies: $\varphi(t, x_h(v)) = x_h(v + t)$ (because for $\varepsilon = 0$ the system is autonomous).

Tere M-Seara (UPC)

The Poincaré (stroboscopic) map

Recall: a way to study a non-autonomous periodic differential equation is to consider the global section

$$\Sigma_{ heta} = \{(x, heta), \ x \in \mathbb{R}^2\}$$

and the Poincaré map (identifying $\theta \simeq \theta + 2\pi$): $\mathcal{P}_{\theta,\mu} : \Sigma_{\theta} \to \Sigma_{\theta}$ given by

$$\mathcal{P}_{\theta,\mu}(x) = \Phi(\theta + 2\pi; \theta, x; \mu)$$

 $\Phi(t, \theta, x; \mu)$ is the solution of the system such that $\Phi(\theta, \theta, x; \mu) = x$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Unperturbed system: the Poincaré map $\mu = 0$

Let's denote $\mathcal{P}_{\theta,0} := \mathcal{P}_{\theta}$, we have

•
$$\mathcal{P}_{\theta}(x) = \Phi(\theta + 2\pi, \theta, x; 0) = \varphi(2\pi, x)$$

x* is a fixed point of the Poincaré map P_θ for any θ, because it is a critical point of the vector field:

$$\dot{x}(t) = f_0(x(t)),$$
 (1)

Therefore $\varphi(t, x^*) = x^*$, $\forall t$, and $\mathcal{P}_{\theta}(x^*) = \varphi(2\pi, x^*) = x^*$.

• Moreover:

$$D\mathcal{P}_{ heta}(x^*) = D_x \varphi(2\pi, x^*)$$

As $\varphi(t,x)$ is the solution of the equation (1) satisfying $\varphi(0,x) = x$, $D_x \varphi(t,x^*)$ is a fundamental solution of the variational equations:

$$z' = Df_0(x^*)z, \ z(0) = \operatorname{Id}$$

Therefore $D_x \varphi(t, x^*) = e^{Df_0(x^*)t}$ and consequently:

$$D\mathcal{P}_{\theta}(x^*) = e^{Df_0(x^*)2\pi}$$

May 20- 24 2024 6 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Unperturbed system: the Poincaré map

In conclusion we have seen that, for $\mu = 0$:

- $D\mathcal{P}_{\theta}(x^*) = e^{Df_0(x^*)2\pi}$
- 3 As the eigenvalues of $Df_0(x^*)$ are $\lambda < 0 < -\lambda$, the eigenvalues of $D\mathcal{P}_{\theta}(x^*)$ are $e^{2\pi\lambda} < 1 < e^{-2\pi\lambda}$

Therefore, for $\mu = 0$, x^* is a hyperbolic fixed point of saddle type of the Poincaré map \mathcal{P}_{θ} for any θ and has one dimensional stable and unstable manifolds.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

Unperturbed system: the Poincaré map

For $\mu = 0$, the dynamics of the Poincaré map \mathcal{P}_{θ} is "the same" as the flow $(\dot{x} = f_0(x) \text{ is autonomous})$ for any θ : (observe that $\mathcal{P}_{\theta}(x) = \varphi(2\pi, x)$)

- We have a fixed point at x^* with a homoclinic orbit Γ .
- $x_h(v)$ is a parameterizaton of the homoclinic manifold (curve) $\Gamma = \{x = x_h(v), v \in \mathbb{R}\} \subset W^u(x^*) \cap W^s(x^*)$
- For any $x_h(v) \in \Gamma$, $\mathcal{P}_{ heta}(x_h(v)) = x_h(v+2\pi) \in \Gamma$
- $\mathcal{P}^n_{\theta}(x_h(v)) = x_h(v + 2\pi n) \to x^* \text{ as } n \to \pm \infty.$
- $\|\mathcal{P}_{\theta}^{n}(x_{h}(v)) \mathcal{P}^{n}(x^{*})\| \leq Ce^{2\pi\lambda|n|}$, for some constant C > 0.
- This inequality is a consequence of the hyperbolicity of the fixed point x^* .

$\mu \neq 0$: Existence of the periodic orbit Λ_{μ}

From now on we consider the full system:

$$\dot{x} = f_0(x) + \mu f_1(x,t;\mu), \ x \in \mathbb{R}^2, \ t \in \mathbb{T},$$

We have the following

Lemma

- There exists $\mu_0 > 0$ such that for $0 \le |\mu| \le \mu_0$, it has a 2π -periodic solution $\Lambda(t;\mu)$.
- Moreover, there exists a constant K > 0 such that $|\Lambda(t; \mu) x^*| \le K\mu$ for any $t \in \mathbb{R}$.
- The periodic orbit $\Lambda_{\mu} = \{x = \Lambda(t; \mu), t \in \mathbb{T}\}\$ is also hyperbolic of saddle type, and its characteristic multipliers are μ -close to $e^{2\pi\lambda}$, $e^{-2\pi\lambda}$.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\mu \neq 0$: Existence of the periodic orbit Λ_{μ}

Proof

Consider the Poincaré map $\mathcal{P}_{\theta,\mu}$ and look for a point $x = \Lambda(\theta; \mu)$ such that

$$M(x,\mu)=\mathcal{P}_{\theta,\mu}(x)-x=0$$

Observe that

•
$$M(x^*, 0) = \mathcal{P}_{\theta}(x^*) - x^* = 0$$

• $\det(\frac{\partial M}{\partial x})(x^*, 0) = \det D\mathcal{P}_{\theta}(x^*) - \mathrm{Id} = \det(e^{2\pi Df_0(x^*)} - \mathrm{Id}) \neq 0$

The second condition is satisfied because $e^{2\pi D f_0(x^*)}$ has eigenvalues $e^{2\pi\lambda} < 1 < e^{-2\pi\lambda}$ different from 1, therefore $(e^{2\pi D f_0(x^*)} - \text{Id})$ has eigenvalues different from 0.

The implicit function theorem gives the existence of a fixed point $x = \Lambda(\theta, \mu)$ for $\mathcal{P}_{\theta,\mu}$, which is μ -close to x^* .

Moreover the eigenvalues of $D\mathcal{P}_{\theta,\mu}(\Lambda(\theta,\mu))$ are μ close to the ones of $D\mathcal{P}_{\theta}(x^*)$, which are $e^{2\pi\lambda}$, $e^{-2\pi\lambda}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

$\mu \neq 0$: Existence of the periodic orbit Λ_{μ}

• The solution $\Phi(t, \theta, \Lambda(\theta, \mu); \mu)$ is 2π -periodic. **Proof:**

As the differential equation is 2π -periodic in time and we have that $x_1(t) = \Phi(t, \theta, \Lambda(\theta, \mu); \mu)$ is a solution and $x_2(t) = \Phi(t + 2\pi, \theta, \Lambda(\theta, \mu); \mu)$ is also a solution. Moreover

 $\begin{aligned} x_1(\theta) &= \Phi(\theta, \theta, \Lambda(\theta, \mu); \mu) = \Lambda(\theta, \mu) = \mathcal{P}_{\theta, \mu}(\Lambda(\theta, \mu)) = \\ \Phi(\theta + 2\pi, \theta, \Lambda(\theta, \mu); \mu) = x_2(\theta) \end{aligned}$

therefore, by the existence and uniqueness theorem we have that $x_1(t) = x_2(t)$ for any $t \in \mathbb{R}$ which gives:

 $\Phi(t, heta,\Lambda(heta,\mu);\mu)=\Phi(t+2\pi, heta,\Lambda(heta,\mu)),$

therefore the solution is a 2π -periodic solution.

• Moreover $\Phi(t, \theta, \Lambda(\theta, \mu); \mu) = \Lambda(t, \mu) \in \Sigma_t$ because is the fixed point of the Poincaré map $\mathcal{P}_{t,\mu}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● のへで

Invariant manifolds of Λ_{μ}

- Now that we know about the existence of the hyperbolic periodic orbit
 Λ_μ = ∪_{θ∈[0,2π]}{Λ(θ, μ)} which is of saddle type, we will find its stable and
 unstable manifolds.
- Fix θ ∈ [0, 2π] and work with the Poincaré map P_θ. By the stable manifold theorem, we know that the W^{u,s}(Λ(θ, μ)) are μ-close to W^{u,s}(x*) = Γ in a neighborhood U of the origin (independent of μ).
- Now we take any point $x_1^u \in W^u(\Lambda(\theta, \mu)) \cap U$ and $x_1^h \in \Gamma \cap U$ such that $x_1^u x_1^h = \mathcal{O}(\mu)$.

• exercice

For any $t^* > \theta$, there exists $\mu_0 > 0$, K > 0 such that the solution $\Phi(t, \theta, x_1^u; \mu)$ and the solution $\Phi(t, \theta, x_1^h; 0)$ satisfy, for $0 \le \mu \le \mu_0$:

 $|\Phi(t, heta,x_1^u;\mu)-\Phi(t, heta,x_1^h;0)|\leq K\mu$ for $heta\leq t\leq t^*$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Invariant manifolds of Λ_{μ}

To prove the exercice use the Gronwall lemma:
 If u(t) is a continuous non-negative function in [a, b], such that, there exist c > 0, L > 0 such that:

$$0\leq u(t)\leq c+L\int_a^tu(s)ds,\,\,t\in[a,b]$$

Then:

•

$$u(t) \leq c e^{L(t-a)}$$

- There is an analogous result for the stable manifold.
- This result tells us that the stable and unstable manifolds of the periodic orbit Λ_μ remain μ-close to the ones of x^{*} when we extend it for finite times.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

V

wu

Invariant manifolds of Λ_{μ}

- Fix a Poincaré section Σ_θ, we have the fixed point Λ(θ, μ) with stable and unstable curves W^{u,s}(Λ(θ, μ)).
- Take a point in the unperturbed homoclinic manifold: $x_0 = x_h(v) \in \Gamma$
- Take straight line N transversal to Γ , for instance the ortogonal one: $N = N(x_0) = q_0 + \langle (f(x_0))^T \rangle = x_0 + \langle \nabla P(x_0) \rangle = x_h(v) + \langle \nabla P(x_h(v)) \rangle$
- As a consequence of the exercise, $W^{s,u}(\Lambda(\theta,\mu)) = W^{s,u}(x^*) + \mathcal{O}(\mu)$ and, as Γ intersects N transversally, both manifolds intersect N in unique points x^u , x^s , which are μ -close to $x_0 = x_h(v)$.
- Our goal is to obtain information about the distance between the points x^{u} and x^{s} , that we already know is of $\mathcal{O}(\mu)$.

Ν

 $\lambda = X(v)$

WS

< ₽

< E> E

Distance between the invariant manifolds of Λ_{μ}

We want to compute the distance between x^u and x^s :

$$d(\mathbf{v}, \mathbf{ heta}; \mathbf{\mu}) = \|\mathbf{x}^{u} - \mathbf{x}^{s}\|$$

Theorem (Theorem 1, Melnikov-Poincaré)

$$d(v,\theta;\mu) = \frac{\mu}{|\nabla P(x_h(v))|} M(v,\theta) + \mathcal{O}(\mu^2)$$

where

$$M(v,\theta) = \int_{-\infty}^{+\infty} \{H_0, H_1\}(x_h(v+s), \theta+s; 0) \, ds$$

where:

$$\{P, Q\} = \frac{\partial P}{\partial x_1} \frac{\partial Q}{\partial x_2} - \frac{\partial P}{\partial x_2} \frac{\partial Q}{\partial x_1}$$

is the Poisson bracket of P and Q.

May 20- 24 2024 15 / 31

э.

 \mathcal{A}

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Melnikov function

The function:

$$M(v,\theta) = \int_{-\infty}^{+\infty} \{H_0, H_1\}(x_h(v+s), \theta+s; 0) \, ds$$

is called the Melnikov function. **Exercice:**

It is 2π -periodic respect to θ and satisfies:

$$M(v, \theta) = M(0, \theta - v) = \mathcal{M}(\theta - v)$$

and

$$\mathcal{M}(\alpha) = \int_{-\infty}^{+\infty} \Omega\left(f_0(x_h(t)), f_1(x_h(t), \alpha + t; 0)\right) dt$$

is 2π -periodic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(2)

590

The Melnikov potential

Exercice:

• Prove that $M(v, \theta) = \frac{\partial L}{\partial v}(v, \theta)$, where

$$L(v,\theta) = \int_{-\infty}^{+\infty} (H_1(x_h(v+s),\theta+s;0) - H_1(x^*,\theta+s;0)) ds$$

is called the Melnikov potential or Poincaré function ans also satisfies: $L(v, \theta) = L(0, \theta - v) = \mathcal{L}(\theta - v)$, where:

$$\mathcal{L}(\alpha) = \int_{-\infty}^{+\infty} (H_1(x_h(t), \alpha + t; 0) - H_1(x^*, \alpha + t; 0)) dt$$

• Analogously: $\mathcal{M}(\alpha) = \mathcal{L}'(\alpha)$

Tere M-Seara (UPC)

May 20- 24 2024 17 / 31

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Now we have the following:

Theorem (Theorem 2)

- If $\forall \theta \ M(v, \theta)$ has a simple zero $v = v^*(\theta)$, there exists $\mu_0 > 0$ such that for any $0 < \mu \le \mu_0$:
 - The stable and unstable manifolds of the fixed point $\Lambda(\theta, \mu)$ of the Poincaré map $\mathcal{P}_{\theta,\mu}$ intersect transversally in a point $x^*(v(\theta;\mu))$ where $v(\theta;\mu) = v^*(\theta) + \mathcal{O}(\mu), \ x^*(v) = x_h(v) + \mathcal{O}(\mu).$
 - The stable and unstable manifolds of the periodic orbit Λ_{μ} intersect transversally along a curve

$$\Gamma_{\mu} = \{ x = x^* (v(\theta; \mu), \theta \in \mathbb{T} \},\$$

 If M(v,θ) > 0, for all v, θ, then there exists μ₀ > 0 such that for any 0 < μ ≤ μ₀ the stable and unstable manifolds of the periodic orbit Λ_μ do not intersect.

Observe that as

$$M(\mathbf{v}, \theta) = \mathcal{M}(\theta - \mathbf{v})$$

If there exists α^* such that $\mathcal{M}(\alpha^*) = 0$ and $\mathcal{M}'(\alpha^*) \neq 0$, then, for any $\theta \in [0, 2\pi]$, taking $v^*(\theta) = \theta - \alpha^*$ is a simple zero of $M(v, \theta)$.

Exercice: Prove the theorem 2.

May 20- 24 2024 19 / 31

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ۹00

T-periodic case

If we consider a *T*-periodic Hamiltonian system:

$$H(q, p, \omega t; \mu) = H_0(q, p) + \mu H_1(q, p, \omega t; \mu), \ t \in \mathbb{R}, \ \omega = \frac{1}{T}$$
(3)

the Melnikov function becomes:

$$M(v,\theta) = \int_{-\infty}^{+\infty} \{H_0, H_1\} \left(x_h(v+s), \theta + \omega s; 0 \right) ds$$
(4)

Exercice:

Prove the equivalent properties of the Melnikov function:

$$M(\mathbf{v}, \theta) = M(0, \theta - \omega \mathbf{v}) = \mathcal{M}(\theta - \omega \mathbf{v}) = \mathcal{L}'(\theta - \omega \mathbf{v}).$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Example

Consider the second order equation:

$$\ddot{x} = x - x^3 + \mu \cos(\omega t)$$

If we call $y = \dot{x}$ we have a Hamiltonian system in the plane:

$$\dot{x} = y$$

 $\dot{y} = x - x^3 + \mu \cos(\omega t)$

Exercice 1

1 When $\mu = 0$ we have the Duffing equation, which is a Hamiltonian system of $H_0(x, y) = \frac{y^2}{2} - \frac{x^2}{2} + \frac{x^4}{4}$, and has a saddle point at the origin (0,0).

2 (0,0) has an homoclinic orbit given by:

$$x_h(v) = \frac{\sqrt{2}}{\cosh v}, \quad y_h(v) = -\frac{\sqrt{2}\sinh v}{\cosh^2 v},$$

example

Exercice 2

① Prove that the system has a periodic orbit Λ_{μ} if μ is small enough and that the corresponding Melnikov function satisfies: $M(v, \theta) = \mathcal{M}(\theta - \omega v)$ where

$$\mathcal{M}(\alpha) = \int_{-\infty}^{+\infty} y_h(t) \cos(\alpha + \omega t) dt$$

Prove that:

$$\mathcal{M}(\alpha) = -\sqrt{2}\pi\omega \frac{\sin \omega\alpha}{\cosh \frac{\pi\omega}{2}}$$

3 Prove that the manifolds $W^{u}(\Lambda_{\mu})$, $W^{s}(\Lambda_{\mu})$ intersect for μ small enough.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 少々で

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Remember, we have to compute: $d(v, \theta; \mu) = ||x^u - x^s||$

• The points $x^{u,s} \in W^{u,s}(\Lambda(\theta,\mu)) \cap N$, with $N = x_0 + \nabla P(x_0)$, $x_0 = x_h(v)$.

• There exist $\alpha^{u,s} \in \mathbb{R}$ such that $\alpha^{u,s} = \mathcal{O}(\mu)$ and:

 $x^{u} = x_{0} + \alpha^{u} \nabla P(x_{0}), \ x^{s} = x_{0} + \alpha^{s} \nabla P(x_{0}) \rightarrow ||x^{u} - x^{s}|| = |\alpha^{u} - \alpha^{s}||\nabla P(x_{0})||$

Let's compute $P(x^*)$, * = u, s, expanding by Taylor:

$$P(x^*) = P(x_0) + DP(x_0)\alpha^*\nabla P(x_0) + \mathcal{O}(\mu^2) = P(x_0) + \alpha^* \|\nabla P(x_0)\|^2 + \mathcal{O}(\mu^2)$$

up to order μ , the quantities $|P(x^u) - P(x^s)|$ and $||x^u - x^s||$ are the same:

$$|P(x^{u}) - P(x^{s})| = |\alpha^{u} - \alpha^{s}| \|\nabla P(x_{0})\|^{2} + \mathcal{O}(\mu^{2}) = \|x^{u} - x^{s}\| \|\nabla P(x_{0})\| + \mathcal{O}(\mu^{2})$$

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

We have to compute: $d(v, \theta; \mu) = ||x^u - x^s||$. We will compute $P(x^u) - P(x^s)$ instead.

- Denote $\tilde{x}(t) = x_h(v \theta + t)$ the solution of the unperturbed system such that $\tilde{x}(\theta) = x_h(v) = x_0$.
- Consider the solutions of the system x*(t) = Φ(t, θ, x*; μ) such that x*(θ) = x*, * = s, u.
- Then $P(x^u) P(x^s) = P(x^u(\theta)) P(x^s(\theta))$.

proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

In general, given a point x, the solution $\Phi(t; \theta, x; \mu)$ is solution of:

$$\dot{x} = J \nabla P(x) + \mu J \nabla H_1(x, t; \mu) = J \nabla H(x, t; \mu)$$

If we consider $m(t) = P(\Phi(t; \theta, x; \mu))$, using the fundamental theorem of calculus:

$$egin{aligned} m(t) &= m(heta) + \int_{ heta}^t rac{d}{dt} m(\sigma) \, d\sigma \ P(\Phi(t; heta,x)) &= P(x) + \mu \int_{ heta}^t \{P,H_1\}(\Phi(\sigma, heta,x;\mu),\sigma;\mu) d\sigma, \end{aligned}$$

where $\{P, h\} = \frac{\partial P}{\partial q} \frac{\partial h}{\partial p} - \frac{\partial P}{\partial p} \frac{\partial h}{\partial q}$ is the Poisson bracket of P and h (P = P(p, q)).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

To compute $P(x^u) = P(x^u(\theta))$ and $P(x^s) = P(x^s(\theta))$ we use the previous computation and recall $x^{u,s}(t) = \Phi(t; \theta, x^{u,s}; \mu)$.

$$P(x^{u,s}(t)) = P(x^{u,s}(\theta)) + \mu \int_{\theta}^{t} \{P, H_1\}(x^{u,s}(\sigma), \sigma; \mu) d\sigma,$$

The same is true for the periodic solution $\Lambda(t,\mu) = \Phi(t;\theta,\Lambda(\theta;\mu))$:

$$P(\Lambda(t,\mu)) = P(\Lambda(\theta,\mu)) + \mu \int_{\theta}^{t} \{P,H_1\}(\Lambda(\sigma,\mu),\sigma;\mu)d\sigma,$$

then:

$$P(x^{u,s}(t)) - P(\Lambda(t,\mu)) = P(x^{u,s}(\theta)) - P(\Lambda(\theta,\mu)) + \mu \int_{\theta}^{t} (\{P,H_1\}(x^{u,s}(\sigma),\sigma;\mu) - \{P,H_1\}(\Lambda(\sigma,\mu),\sigma;\mu)) d\sigma,$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ = のへで

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Recall that the points $x^{u,s}(\theta) \in W^{u,s}(\Lambda(\theta,\mu))$, therefore:

$$|\mathcal{P}_{\theta}^{n}(x^{u,s}(\theta)) - \mathcal{P}_{\theta}^{n}(\Lambda(\theta,\mu))| \leq C e^{\gamma|n|}, \ \gamma = 2\pi\lambda + \mathcal{O}(\mu) < 0$$

and the solutions

$$|x^{u,s}(t) - \Lambda(t,\theta)| = |\Phi(t,\theta,x^{u,s};\mu) - \Phi(t,\theta,\Lambda(\theta,\mu);\mu)| \le \tilde{C}e^{\gamma|t|}, \text{ for } \mp t \in [0,\infty)$$

Use the previous formula for the stable manifold at t = T > 0 and the unstable at t = -T < 0:

$$P(x^{s}(T)) - P(\Lambda(T,\mu)) = P(x^{s}(\theta)) - P(\Lambda(\theta,\mu)) + \mu \int_{\theta}^{T} (\{P,H_{1}\}(x^{s}(\sigma),\sigma;\mu) - \{P,H_{1}\}(\Lambda(\sigma,\mu),\sigma;\mu)) P(x^{u}(-T)) - P(\Lambda(-T,\mu)) = P(x^{u}(\theta)) - P(\Lambda(\theta,\mu)) + \mu \int_{\theta}^{-T} (\{P,H_{1}\}(x^{u}(\sigma),\sigma;\mu) - \{P,H_{1}\}(\Lambda(\sigma,\mu),\sigma;\mu))$$

proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

We can write, taking $T = +\infty$ in the previous expressions (the integrals are convergent!):

$$P(x^{\mathfrak{s}}(\theta)) - P(\Lambda(\theta,\mu)) = -\mu \int_{\theta}^{\infty} \left(\{P, H_1\}(x^{\mathfrak{s}}(\sigma),\sigma;\mu) - \{P, H_1\}(\Lambda(\sigma,\mu),\sigma;\mu) \right) d\sigma$$
$$P(x^{\mathfrak{u}}(\theta)) - P(\Lambda(\theta,\mu)) = -\mu \int_{\theta}^{-\infty} \left(\{P, H_1\}(x^{\mathfrak{s}}(\sigma),\sigma;\mu) - \{P, H_1\}(\Lambda(\sigma,\mu),\sigma;\mu) \right) d\sigma$$

Up to here these computations are exact. Now we use:

•
$$H_1(x,\sigma;\mu) = H_1(x,\sigma;0) + \mathcal{O}(\mu)$$

- $\Lambda(\theta,\mu) = x^* + \mathcal{O}(\mu)$, then $P(\Lambda(\theta,\mu)) = P(x^*) + DP(x^*)\mathcal{O}(\mu) = \mathcal{O}(\mu^2)$, because $DP(x^*) = 0$. Analogously $\{P, H_1\}(\Lambda(\sigma, \mu)) = \{P, H_1\}(x^*) + \mathcal{O}(\mu) = \mathcal{O}(\mu).$
- $\{P, H_1\}(x^s(\sigma, \mu), \sigma; 0) = \{P, H_1\}(x_h(\sigma \theta + v), \sigma; 0) + \mathcal{O}(\mu) \text{ for } \sigma \geq \theta,$ where x_h is the unperturbed homoclinic!

•
$$\{P, H_1\}(x^u(\sigma, \mu), \sigma; 0) = \{P, H_1\}(x_h(\sigma - \theta + v), \sigma; 0)) + \mathcal{O}(\mu) \text{ for } \sigma \leq \theta.$$

Tere M-Seara (UPC) May 20- 24 2024 28 / 31

20- 24 2024

Tere IVI-Seara (UPC)

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Using the previous approximations in the expressions:

$$P(x^{s}(\theta)) - P(\Lambda(\theta, \mu)) = -\mu \int_{\theta}^{\infty} \left(\{P, H_{1}\}(x^{s}(\sigma), \sigma; 0) - \{P, H_{1}\}(\Lambda(\sigma, \mu), \sigma; 0) \right) d\sigma$$
$$P(x^{u}(\theta)) - P(\Lambda(\theta, \mu)) = -\mu \int_{\theta}^{-\infty} \left(\{P, H_{1}\}(x^{s}(\sigma), \sigma; 0) - \{P, H_{1}\}(\Lambda(\sigma, \mu), \sigma; 0) \right) d\sigma$$

We obtain:

$$P(x^{s}(\theta)) = -\mu \int_{\theta}^{\infty} \{P, H_{1}\}(x_{h}(\sigma - \theta + v), \sigma; 0) + \mathcal{O}(\mu^{2}),$$

$$P(x^{u}(\theta)) = \mu \int_{-\infty}^{\theta} \{P, H_{1}\}(x_{h}(\sigma - \theta + v), \sigma; 0) + \mathcal{O}(\mu^{2}),$$

$$P(x^{u}(\theta)) - P(x^{s}(\theta)) = \mu \int_{-\infty}^{+\infty} \{P, H_{1}\}(x_{h}(\sigma - \theta + v), \sigma; 0) + \mathcal{O}(\mu^{2})$$

$$= \mu \int_{-\infty}^{+\infty} \{P, H_{1}\}(x_{h}(s + v), s + \theta; 0) + \mathcal{O}(\mu^{2}) = \mu M(v, \theta) + \mathcal{O}(\mu^{2})$$

Tere M-Seara (UPC)

29/31

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Model $\dot{x} = J\nabla P(x, y) + \mu H_1(x, t; \mu)$. H_1 can be *T*-periodic in time.

- Recall that the points $x^u(\theta), x^s(\theta) \in W^u(\Lambda_\mu) \cap N$
- We wanted to compute $\|x^u(\theta) x^s(\theta)\|$
- Take the pendulum $P(q, p) = \frac{p^2}{2} + V(q)$
- We saw that $|P(x^u) P(x^s)| = ||x^u x^s|| ||\nabla P(q_0)|| + \mathcal{O}(\mu^2).$
- We have seen that:

$$|P(x^u) - P(x^s)| = \mu M(v, \theta) + \mathcal{O}(\mu^2)$$

• Consequently:

$$\|x^{u}-x^{s}\|=rac{\mu}{\|
abla P(q_{0})\|}M(v, heta)+\mathcal{O}(\mu^{2})$$

where $M(v, \theta) = \mathcal{M}(\theta - \omega v) = \frac{\partial}{\partial v} L(v, \theta) = \mathcal{L}'(\theta - \omega v)$ is the Melnikov function and L the melnikov potential.

May 20- 24 2024

An example of fast forcing: The perturbed pendulum

In our original model $\omega = \frac{1}{\sqrt{\varepsilon}}$. Let's do an examle.

$$H\left(p,q,rac{t}{arepsilon}
ight)=rac{p^2}{2}+(\cos q-1)+\mu(\cos q-1)\sinrac{t}{\sqrt{arepsilon}}$$

- Λ_μ = {(0,0)} is a hyperbolic periodic orbit for this system. Λ(θ; μ) = (0,0) is the fixed point of the Poincaré map P_θ.
- The Melnikov potential is:

$$L(v,\theta) = 4\pi e^{-\frac{\pi}{2\sqrt{\varepsilon}}} \left(\sin(v - \frac{\theta}{\sqrt{\varepsilon}}) \right).$$
$$P(z^{s}) - P(z^{u}) = 4\pi e^{-\frac{\pi}{2\sqrt{\varepsilon}}} \left(\sin(v - \frac{\theta}{\sqrt{\varepsilon}}) \right) + \mathcal{O}(\mu^{2})$$

We need $\mu = \mathcal{O}(e^{-\frac{\pi}{2\sqrt{\varepsilon}}})$ to make the error term smaller!

Tere M-Seara (UPC)

May 20- 24 2024 31 / 31

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで