Lecture 2: Splitting of separatrices
 Master Class
 KTH, Stockholm

Tere M. Seara
Universitat Politecnica de Catalunya

May 20-24 2024

The case of one and a half degrees of freedom: the Melnikov method

Let us consider a Hamiltonian with $1+\frac{1}{2}$ degrees of freedom with 2π-periodic time dependence:

$$
H(p, q, t ; \mu)=H_{0}(p, q)+\mu H_{1}(p, q, t ; \mu),
$$

where $H_{0}(p, q)=P(p, q)$ is a pendulum: $P(p, q)=\frac{1}{2} p^{2}+V(q)$.
Associated differential equations:

$$
\dot{x}=f(x, t ; \mu)=J \nabla H(x, t ; \mu)=f_{0}(x)+\mu f_{1}(x, t ; \mu), \quad x=(q, p), t \in \mathbb{T}
$$

with:

$$
f_{0}(x)=J \nabla H_{0}(x), \quad f_{1}(x, t ; \mu)=J \nabla H_{1}(x, t ; \mu), \quad x=(q, p), t \in \mathbb{T}
$$

and denote by $\Phi\left(t ; \theta_{0}, x_{0} ; \mu\right)$ the general solution such that $\Phi\left(\theta_{0} ; \theta_{0}, x_{0} ; \mu\right)=x_{0}$.

The unperturbed system

Observe that, for $\mu=0$, we have: $\Phi\left(t ; \theta_{0}, x_{0} ; 0\right)=\varphi\left(t-\theta_{0}, x_{0}\right)$, where $\varphi(t, x)$ is the flow of

$$
\dot{x}=f_{0}(x)=J \nabla H_{0}(x), \quad \text { such that } \quad \varphi(0, x)=x
$$

Assumptions:

- $H_{0}(p, q)=P(p, q)$ is a pendulum: $P(p, q)=\frac{1}{2} p^{2}+V(q)$, with $V(q)$ 2π-periodic with a unique non-degenerate maximum, say at $q=0$ and take, for instance, $V(0)=0$.
Therefore, $x^{*}=(0,0)$ is and equilibrium of saddle type of $\dot{x}=f_{0}(x)$, that is, the eigenvalues of $D f_{0}\left(x^{*}\right)$ are $\lambda_{1}=\lambda<0$ and $\lambda_{2}=-\lambda>0$.
- One branch of the stable and unstable manifolds of x^{*} coincide along a separatrix Γ included in $P^{-1}(0)=\left\{(q, p), \frac{p^{2}}{2}+V(q)=0\right\}$.
- $f_{1}(x, t+2 \pi)=f_{1}(x, t)$

We want to study what happens with the critical point x^{*} and its stable and unstable manifolds for $\mu>0$ small.

Unperturbed system

The dynamics of $\dot{x}=f_{0}(x), x \in \mathbb{R}^{2}$

- We have a critical point at x^{*} with a homoclinic orbit Γ.
- $x_{h}(t)$ is a parameterizaton of the homoclinic orbit Γ such that: $\dot{x}_{h}(t)=f_{0}\left(x_{h}(t)\right)$ and $x_{h}(t) \rightarrow x^{*}$ as $t \rightarrow \pm \infty$.
- This gives us a parameterizaton of the homoclinic manifold (curve)

$$
\Gamma=\left\{x=x_{h}(v), v \in \mathbb{R}\right\} \subset W^{u}\left(x^{*}\right) \cap W^{s}\left(x^{*}\right)
$$

which satisfies: $\varphi\left(t, x_{h}(v)\right)=x_{h}(v+t)$ (because for $\varepsilon=0$ the system is autonomous).

The Poincaré (stroboscopic) map

Recall: a way to study a non-autonomous periodic differential equation is to consider the global section

$$
\Sigma_{\theta}=\left\{(x, \theta), x \in \mathbb{R}^{2}\right\}
$$

and the Poincaré map (identifying $\theta \simeq \theta+2 \pi$):
$\mathcal{P}_{\theta, \mu}: \Sigma_{\theta} \rightarrow \Sigma_{\theta}$ given by

$$
\mathcal{P}_{\theta, \mu}(x)=\Phi(\theta+2 \pi ; \theta, x ; \mu)
$$

$\Phi(t, \theta, x ; \mu)$ is the solution of the system such that $\Phi(\theta, \theta, x ; \mu)=x$

Unperturbed system: the Poincaré map $\mu=0$

Let's denote $\mathcal{P}_{\theta, 0}:=\mathcal{P}_{\theta}$, we have

- $\mathcal{P}_{\theta}(x)=\Phi(\theta+2 \pi, \theta, x ; 0)=\varphi(2 \pi, x)$
- x^{*} is a fixed point of the Poincaré map \mathcal{P}_{θ} for any θ, because it is a critical point of the vector field:

$$
\begin{equation*}
\dot{x}(t)=f_{0}(x(t)), \tag{1}
\end{equation*}
$$

Therefore $\varphi\left(t, x^{*}\right)=x^{*}, \forall t$, and $\mathcal{P}_{\theta}\left(x^{*}\right)=\varphi\left(2 \pi, x^{*}\right)=x^{*}$.

- Moreover:

$$
D \mathcal{P}_{\theta}\left(x^{*}\right)=D_{x} \varphi\left(2 \pi, x^{*}\right)
$$

As $\varphi(t, x)$ is the solution of the equation (1) satifying $\varphi(0, x)=x$, $D_{x} \varphi\left(t, x^{*}\right)$ is a fundamental solution of the variational equations:

$$
z^{\prime}=D f_{0}\left(x^{*}\right) z, z(0)=\operatorname{Id}
$$

Therefore $D_{x} \varphi\left(t, x^{*}\right)=e^{D f_{0}\left(x^{*}\right) t}$ and consequently:

$$
D \mathcal{P}_{\theta}\left(x^{*}\right)=e^{D f_{0}\left(x^{*}\right) 2 \pi}
$$

Unperturbed system: the Poincaré map

In conclusion we have seen that, for $\mu=0$:
(1) $\mathcal{P}_{\theta}\left(x^{*}\right)=x^{*}$
(2) $D \mathcal{P}_{\theta}\left(x^{*}\right)=e^{D f_{0}\left(x^{*}\right) 2 \pi}$
(3) As the eigenvalues of $D f_{0}\left(x^{*}\right)$ are $\lambda<0<-\lambda$, the eigenvalues of $D \mathcal{P}_{\theta}\left(x^{*}\right)$ are $e^{2 \pi \lambda}<1<e^{-2 \pi \lambda}$
Therefore, for $\mu=0, x^{*}$ is a hyperbolic fixed point of saddle type of the Poincaré map \mathcal{P}_{θ} for any θ and has one dimensional stable and unstable manifolds.

Unperturbed system: the Poincaré map

For $\mu=0$, the dynamics of the Poincaré map \mathcal{P}_{θ} is "the same" as the flow ($\dot{x}=f_{0}(x)$ is autonomous) for any θ : (observe that $\mathcal{P}_{\theta}(x)=\varphi(2 \pi, x)$)

- We have a fixed point at x^{*} with a homoclinic orbit Γ.
- $x_{h}(v)$ is a parameterizaton of the homoclinic manifold (curve) $\Gamma=\left\{x=x_{h}(v), v \in \mathbb{R}\right\} \subset W^{u}\left(x^{*}\right) \cap W^{s}\left(x^{*}\right)$
- For any $x_{h}(v) \in \Gamma, \mathcal{P}_{\theta}\left(x_{h}(v)\right)=x_{h}(v+2 \pi) \in \Gamma$
- $\mathcal{P}_{\theta}^{n}\left(x_{h}(v)\right)=x_{h}(v+2 \pi n) \rightarrow x^{*}$ as $n \rightarrow \pm \infty$.
- $\left\|\mathcal{P}_{\theta}^{n}\left(x_{h}(v)\right)-\mathcal{P}^{n}\left(x^{*}\right)\right\| \leq C e^{2 \pi \lambda|n|}$, for some constant $C>0$.
- This inequality is a consequence of the hyperbolicity of the fixed point x^{*}.

$\mu \neq 0$: Existence of the periodic orbit Λ_{μ}

From now on we consider the full system:

$$
\dot{x}=f_{0}(x)+\mu f_{1}(x, t ; \mu), x \in \mathbb{R}^{2}, t \in \mathbb{T},
$$

We have the following
Lemma

- There exists $\mu_{0}>0$ such that for $0 \leq|\mu| \leq \mu_{0}$, it has a 2π-periodic solution $\Lambda(t ; \mu)$.
- Moreover, there exists a constant $K>0$ such that $\left|\Lambda(t ; \mu)-x^{*}\right| \leq K \mu$ for any $t \in \mathbb{R}$.
- The periodic orbit $\Lambda_{\mu}=\{x=\Lambda(t ; \mu), t \in \mathbb{T}\}$ is also hyperbolic of saddle type, and its characteristic multipliers are μ-close to $e^{2 \pi \lambda}, e^{-2 \pi \lambda}$.

$\mu \neq 0$: Existence of the periodic orbit Λ_{μ}

Proof

Consider the Poincaré map $\mathcal{P}_{\theta, \mu}$ and look for a point $x=\Lambda(\theta ; \mu)$ such that

$$
M(x, \mu)=\mathcal{P}_{\theta, \mu}(x)-x=0
$$

Observe that

- $M\left(x^{*}, 0\right)=\mathcal{P}_{\theta}\left(x^{*}\right)-x^{*}=0$
- $\operatorname{det}\left(\frac{\partial M}{\partial x}\right)\left(x^{*}, 0\right)=\operatorname{det} D \mathcal{P}_{\theta}\left(x^{*}\right)-\operatorname{Id}=\operatorname{det}\left(e^{2 \pi D f_{0}\left(x^{*}\right)}-\operatorname{Id}\right) \neq 0$

The second condition is satisfied because $e^{2 \pi D f_{0}\left(x^{*}\right)}$ has eigenvalues $e^{2 \pi \lambda}<1<e^{-2 \pi \lambda}$ different from 1, therefore ($e^{2 \pi D f_{0}\left(x^{*}\right)}-\mathrm{Id}$) has eigenvalues different from 0 .
The implicit function theorem gives the existence of a fixed point $x=\Lambda(\theta, \mu)$ for $\mathcal{P}_{\theta, \mu}$, which is μ-close to x^{*}.
Moreover the eigenvalues of $D \mathcal{P}_{\theta, \mu}(\Lambda(\theta, \mu))$ are μ close to the ones of $D \mathcal{P}_{\theta}\left(x^{*}\right)$, which are $e^{2 \pi \lambda}, e^{-2 \pi \lambda}$.

$\mu \neq 0$: Existence of the periodic orbit Λ_{μ}

- The solution $\Phi(t, \theta, \wedge(\theta, \mu) ; \mu)$ is 2π-periodic.

Proof:

As the differential equation is 2π-periodic in time and we have that
$x_{1}(t)=\Phi(t, \theta, \Lambda(\theta, \mu) ; \mu)$ is a solution and
$x_{2}(t)=\Phi(t+2 \pi, \theta, \Lambda(\theta, \mu) ; \mu)$ is also a solution.
Moreover
$x_{1}(\theta)=\Phi(\theta, \theta, \Lambda(\theta, \mu) ; \mu)=\Lambda(\theta, \mu)=\mathcal{P}_{\theta, \mu}(\Lambda(\theta, \mu))=$
$\Phi(\theta+2 \pi, \theta, \Lambda(\theta, \mu) ; \mu)=x_{2}(\theta)$
therefore, by the existence and uniqueness theorem we have that $x_{1}(t)=x_{2}(t)$ for any $t \in \mathbb{R}$
which gives:
$\Phi(t, \theta, \Lambda(\theta, \mu) ; \mu)=\Phi(t+2 \pi, \theta, \Lambda(\theta, \mu))$,
therefore the solution is a 2π-periodic solution.

- Moreover $\Phi(t, \theta, \Lambda(\theta, \mu) ; \mu)=\Lambda(t, \mu) \in \Sigma_{t}$ because is the fixed point of the Poincaré map $\mathcal{P}_{t, \mu}$.

Invariant manifolds of Λ_{μ}

- Now that we know about the existence of the hyperbolic periodic orbit $\Lambda_{\mu}=\cup_{\theta \in[0,2 \pi]}\{\Lambda(\theta, \mu)\}$ which is of saddle type, we will find its stable and unstable manifolds.
- Fix $\theta \in[0,2 \pi]$ and work with the Poincaré map \mathcal{P}_{θ}. By the stable manifold theorem, we know that the $W^{u, s}(\Lambda(\theta, \mu))$ are μ-close to $W^{u, s}\left(x^{*}\right)=\Gamma$ in a neighborhood U of the origin (independent of μ).
- Now we take any point $x_{1}^{\mu} \in W^{u}(\Lambda(\theta, \mu)) \cap U$ and $x_{1}^{h} \in \Gamma \cap U$ such that $x_{1}^{\mu}-x_{1}^{h}=\mathcal{O}(\mu)$.
- exercice

For any $t^{*}>\theta$, there exists $\mu_{0}>0, K>0$ such that the solution $\Phi\left(t, \theta, x_{1}^{\mu} ; \mu\right)$ and the solution $\Phi\left(t, \theta, x_{1}^{h} ; 0\right)$ satisfy, for $0 \leq \mu \leq \mu_{0}$:

$$
\left|\Phi\left(t, \theta, x_{1}^{u} ; \mu\right)-\Phi\left(t, \theta, x_{1}^{h} ; 0\right)\right| \leq K \mu \text { for } \theta \leq t \leq t^{*}
$$

Invariant manifolds of Λ_{μ}

- To prove the exercice use the Gronwall lemma:

If $u(t)$ is a continuous non-negative function in $[a, b]$, such that, there exist $c>0, L>0$ such that:

$$
0 \leq u(t) \leq c+L \int_{a}^{t} u(s) d s, t \in[a, b]
$$

Then:

$$
u(t) \leq c e^{L(t-a)}
$$

- There is an analogous result for the stable manifold.
- This result tells us that the stable and unstable manifolds of the periodic orbit Λ_{μ} remain μ-close to the ones of x^{*} when we extend it for finite times.

Invariant manifolds of Λ_{μ}

- Fix a Poincaré section Σ_{θ}, we have the fixed point $\Lambda(\theta, \mu)$ with stable and unstable curves $W^{u, s}(\Lambda(\theta, \mu))$.
- Take a point in the unperturbed homoclinic manifold: $x_{0}=x_{h}(v) \in \Gamma$
- Take straight line N transversal to Γ, for instance the ortogonal one: $N=N\left(x_{0}\right)=q_{0}+\left\langle\left(f\left(x_{0}\right)\right)^{T}\right\rangle=x_{0}+\left\langle\nabla P\left(x_{0}\right)\right\rangle=x_{h}(v)+\left\langle\nabla P\left(x_{h}(v)\right)\right\rangle$
- As a consequence of the exercise, $W^{s, u}(\Lambda(\theta, \mu))=W^{s, u}\left(x^{*}\right)+\mathcal{O}(\mu)$ and, as Γ intersects N transversally, both manifolds intersect N in unique points x^{u}, x^{s}, which are μ-close to $x_{0}=x_{h}(v)$.
- Our goal is to obtain information about the distance between the points x^{u} and x^{5}, that we already know is of $\mathcal{O}(\mu)$.

Distance between the invariant manifolds of Λ_{μ}

We want to compute the distance between x^{u} and x^{s} :

$$
d(v, \theta ; \mu)=\left\|x^{u}-x^{5}\right\|
$$

Theorem (Theorem 1, Melnikov-Poincaré)

$$
d(v, \theta ; \mu)=\frac{\mu}{\left|\nabla P\left(x_{h}(v)\right)\right|} M(v, \theta)+\mathcal{O}\left(\mu^{2}\right)
$$

where

$$
M(v, \theta)=\int_{-\infty}^{+\infty}\left\{H_{0}, H_{1}\right\}\left(x_{h}(v+s), \theta+s ; 0\right) d s
$$

where:

$$
\{P, Q\}=\frac{\partial P}{\partial x_{1}} \frac{\partial Q}{\partial x_{2}}-\frac{\partial P}{\partial x_{2}} \frac{\partial Q}{\partial x_{1}}
$$

is the Poisson bracket of P and Q.

The Melnikov function

The function:

$$
\begin{equation*}
M(v, \theta)=\int_{-\infty}^{+\infty}\left\{H_{0}, H_{1}\right\}\left(x_{h}(v+s), \theta+s ; 0\right) d s \tag{2}
\end{equation*}
$$

is called the Melnikov function.

Exercice:

It is 2π-periodic respect to θ and satisfies:

$$
M(v, \theta)=M(0, \theta-v)=\mathcal{M}(\theta-v)
$$

and

$$
\mathcal{M}(\alpha)=\int_{-\infty}^{+\infty} \Omega\left(f_{0}\left(x_{h}(t)\right), f_{1}\left(x_{h}(t), \alpha+t ; 0\right)\right) d t
$$

is 2π-periodic.

The Melnikov potential

Exercice:

- Prove that $M(v, \theta)=\frac{\partial L}{\partial v}(v, \theta)$, where

$$
L(v, \theta)=\int_{-\infty}^{+\infty}\left(H_{1}\left(x_{h}(v+s), \theta+s ; 0\right)-H_{1}\left(x^{*}, \theta+s ; 0\right)\right) d s
$$

is called the Melnikov potential or Poincaré function ans also satisfies: $L(v, \theta)=L(0, \theta-v)=\mathcal{L}(\theta-v)$, where:

$$
\mathcal{L}(\alpha)=\int_{-\infty}^{+\infty}\left(H_{1}\left(x_{h}(t), \alpha+t ; 0\right)-H_{1}\left(x^{*}, \alpha+t ; 0\right)\right) d t
$$

- Analogously: $\mathcal{M}(\alpha)=\mathcal{L}^{\prime}(\alpha)$

Now we have the following:
Theorem (Theorem 2)

- If $\forall \theta M(v, \theta)$ has a simple zero $v=v^{*}(\theta)$, there exists $\mu_{0}>0$ such that for any $0<\mu \leq \mu_{0}$:
- The stable and unstable manifolds of the fixed point $\Lambda(\theta, \mu)$ of the Poincaré map $\mathcal{P}_{\theta, \mu}$ intersect transversally in a point $x^{*}(v(\theta ; \mu))$ where $v(\theta ; \mu)=v^{*}(\theta)+\mathcal{O}(\mu), x^{*}(v)=x_{h}(v)+\mathcal{O}(\mu)$.
- The stable and unstable manifolds of the periodic orbit Λ_{μ} intersect transversally along a curve

$$
\Gamma_{\mu}=\left\{x=x^{*}(v(\theta ; \mu), \theta \in \mathbb{T}\}\right.
$$

- If $M(v, \theta)>0$, for all v, θ, then there exists $\mu_{0}>0$ such that for any $0<\mu \leq \mu_{0}$ the stable and unstable manifolds of the periodic orbit Λ_{μ} do not intersect.

Observe that as

$$
M(v, \theta)=\mathcal{M}(\theta-v)
$$

If there exists α^{*} such that $\mathcal{M}\left(\alpha^{*}\right)=0$ and $\mathcal{M}^{\prime}\left(\alpha^{*}\right) \neq 0$,then, for any $\theta \in[0,2 \pi]$, taking $v^{*}(\theta)=\theta-\alpha^{*}$ is a simple zero of $M(v, \theta)$.

Exercice: Prove the theorem 2.

T-periodic case

If we consider a T-periodic Hamiltonian system:

$$
\begin{equation*}
H(q, p, \omega t ; \mu)=H_{0}(q, p)+\mu H_{1}(q, p, \omega t ; \mu), t \in \mathbb{R}, \omega=\frac{1}{T} \tag{3}
\end{equation*}
$$

the Melnikov function becomes:

$$
\begin{equation*}
\left.M(v, \theta)=\int_{-\infty}^{+\infty}\left\{H_{0}, H_{1}\right\}\left(x_{h}(v+s), \theta+\omega s ; 0\right)\right) d s \tag{4}
\end{equation*}
$$

Exercice:

Prove the equivalent properties of the Melnikov function:

$$
M(v, \theta)=M(0, \theta-\omega v)=\mathcal{M}(\theta-\omega v)=\mathcal{L}^{\prime}(\theta-\omega v)
$$

Example

Consider the second order equation:

$$
\ddot{x}=x-x^{3}+\mu \cos (\omega t)
$$

If we call $y=\dot{x}$ we have a Hamiltonian system in the plane:

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =x-x^{3}+\mu \cos (\omega t)
\end{aligned}
$$

Exercice 1

(1) When $\mu=0$ we have the Duffing equation, which is a Hamiltonian system of $H_{0}(x, y)=\frac{y^{2}}{2}-\frac{x^{2}}{2}+\frac{x^{4}}{4}$, and has a saddle point at the origin $(0,0)$.
(2) $(0,0)$ has an homoclinic orbit given by:

$$
x_{h}(v)=\frac{\sqrt{2}}{\cosh v}, \quad y_{h}(v)=-\frac{\sqrt{2} \sinh v}{\cosh ^{2} v}
$$

example

Exercice 2

(1) Prove that the system has a periodic orbit Λ_{μ} if μ is small enough and that the corresponding Melnikov function satisfies: $M(v, \theta)=\mathcal{M}(\theta-\omega v)$ where

$$
\mathcal{M}(\alpha)=\int_{-\infty}^{+\infty} y_{h}(t) \cos (\alpha+\omega t) d t
$$

(2) Prove that:

$$
\mathcal{M}(\alpha)=-\sqrt{2} \pi \omega \frac{\sin \omega \alpha}{\cosh \frac{\pi \omega}{2}}
$$

(3) Prove that the manifolds $W^{\mu}\left(\Lambda_{\mu}\right), W^{s}\left(\Lambda_{\mu}\right)$ intersect for μ small enough.

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Remember, we have to compute: $d(v, \theta ; \mu)=\left\|x^{u}-x^{s}\right\|$

- The points $x^{u, s} \in W^{u, s}(\Lambda(\theta, \mu)) \cap N$, with $N=x_{0}+\nabla P\left(x_{0}\right), x_{0}=x_{h}(v)$.

- There exist $\alpha^{u, s} \in \mathbb{R}$ such that $\alpha^{u, s}=\mathcal{O}(\mu)$ and:

$$
x^{u}=x_{0}+\alpha^{u} \nabla P\left(x_{0}\right), x^{s}=x_{0}+\alpha^{s} \nabla P\left(x_{0}\right) \rightarrow\left\|x^{u}-x^{s}\right\|=\left|\alpha^{u}-\alpha^{s}\right|\left\|\nabla P\left(x_{0}\right)\right\|
$$

Let's compute $P\left(x^{*}\right), *=u, s$, expanding by Taylor:

$$
P\left(x^{*}\right)=P\left(x_{0}\right)+D P\left(x_{0}\right) \alpha^{*} \nabla P\left(x_{0}\right)+\mathcal{O}\left(\mu^{2}\right)=P\left(x_{0}\right)+\alpha^{*}\left\|\nabla P\left(x_{0}\right)\right\|^{2}+\mathcal{O}\left(\mu^{2}\right)
$$

up to order μ, the quantities $\left|P\left(x^{u}\right)-P\left(x^{s}\right)\right|$ and $\left\|x^{u}-x^{s}\right\|$ are the same:
$\left|P\left(x^{u}\right)-P\left(x^{s}\right)\right|=\left|\alpha^{u}-\alpha^{5}\right|\left\|\nabla P\left(x_{0}\right)\right\|^{2}+\mathcal{O}\left(\mu^{2}\right)=\left\|x^{u}-x^{5}\right\|\left\|\nabla P\left(x_{0}\right)\right\|+\mathcal{O}\left(\mu^{2}\right)$

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

We have to compute: $d(v, \theta ; \mu)=\left\|x^{u}-x^{s}\right\|$. We will compute $P\left(x^{u}\right)-P\left(x^{s}\right)$ instead.

- Denote $\tilde{x}(t)=x_{h}(v-\theta+t)$ the solution of the unperturbed system such that $\tilde{x}(\theta)=x_{h}(v)=x_{0}$.
- Consider the solutions of the system $x^{*}(t)=\Phi\left(t, \theta, x^{*} ; \mu\right)$ such that $x^{*}(\theta)=x^{*}, *=s, u$.
- Then $P\left(x^{u}\right)-P\left(x^{s}\right)=P\left(x^{u}(\theta)\right)-P\left(x^{5}(\theta)\right)$.

proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

In general, given a point x, the solution $\Phi(t ; \theta, x ; \mu)$ is solution of:

$$
\dot{x}=J \nabla P(x)+\mu J \nabla H_{1}(x, t ; \mu)=J \nabla H(x, t ; \mu)
$$

If we consider $m(t)=P(\Phi(t ; \theta, x ; \mu))$, using the fundamental theorem of calculus:

$$
\begin{aligned}
m(t) & =m(\theta)+\int_{\theta}^{t} \frac{d}{d t} m(\sigma) d \sigma \\
P(\Phi(t ; \theta, x)) & =P(x)+\mu \int_{\theta}^{t}\left\{P, H_{1}\right\}(\Phi(\sigma, \theta, x ; \mu), \sigma ; \mu) d \sigma
\end{aligned}
$$

where $\{P, h\}=\frac{\partial P}{\partial q} \frac{\partial h}{\partial p}-\frac{\partial P}{\partial p} \frac{\partial h}{\partial q}$ is the Poisson bracket of P and $h(P=P(p, q))$.

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

To compute $P\left(x^{u}\right)=P\left(x^{u}(\theta)\right)$ and $P\left(x^{s}\right)=P\left(x^{s}(\theta)\right)$ we use the previous computation and recall $x^{u, s}(t)=\Phi\left(t ; \theta, x^{u, s} ; \mu\right)$.

$$
P\left(x^{u, s}(t)\right)=P\left(x^{u, s}(\theta)\right)+\mu \int_{\theta}^{t}\left\{P, H_{1}\right\}\left(x^{u, s}(\sigma), \sigma ; \mu\right) d \sigma
$$

The same is true for the periodic solution $\Lambda(t, \mu)=\Phi(t ; \theta, \Lambda(\theta ; \mu))$:

$$
P(\Lambda(t, \mu))=P(\Lambda(\theta, \mu))+\mu \int_{\theta}^{t}\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; \mu) d \sigma
$$

then:

$$
\begin{aligned}
P\left(x^{u, s}(t)\right)-P(\Lambda(t, \mu)) & =P\left(x^{u, s}(\theta)\right)-P(\Lambda(\theta, \mu)) \\
& +\mu \int_{\theta}^{t}\left(\left\{P, H_{1}\right\}\left(x^{u, s}(\sigma), \sigma ; \mu\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; \mu)\right) d \sigma,
\end{aligned}
$$

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Recall that the points $x^{u, s}(\theta) \in W^{u, s}(\Lambda(\theta, \mu))$, therefore:

$$
\left|\mathcal{P}_{\theta}^{n}\left(x^{u, s}(\theta)\right)-\mathcal{P}_{\theta}^{n}(\Lambda(\theta, \mu))\right| \leq C e^{\gamma|n|}, \gamma=2 \pi \lambda+\mathcal{O}(\mu)<0
$$

and the solutions
$\left|x^{u, s}(t)-\Lambda(t, \theta)\right|=\left|\Phi\left(t, \theta, x^{u, s} ; \mu\right)-\Phi(t, \theta, \Lambda(\theta, \mu) ; \mu)\right| \leq \tilde{C} e^{\gamma|t|}$, for $\mp t \in[0, \infty)$
Use the previous formula for the stable manifold at $t=T>0$ and the unstable at $t=-T<0$:

$$
\begin{aligned}
P\left(x^{s}(T)\right)-P(\Lambda(T, \mu)) & =P\left(x^{s}(\theta)\right)-P(\Lambda(\theta, \mu)) \\
& +\mu \int_{\theta}^{T}\left(\left\{P, H_{1}\right\}\left(x^{s}(\sigma), \sigma ; \mu\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; \mu)\right) \\
P\left(x^{u}(-T)\right)-P(\Lambda(-T, \mu)) & =P\left(x^{u}(\theta)\right)-P(\Lambda(\theta, \mu)) \\
& +\mu \int_{\theta}^{-T}\left(\left\{P, H_{1}\right\}\left(x^{u}(\sigma), \sigma ; \mu\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; \mu)\right.
\end{aligned}
$$

proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

We can write, taking $T=+\infty$ in the previous expressions (the integrals are convergent!):

$$
\begin{gathered}
P\left(x^{s}(\theta)\right)-P(\Lambda(\theta, \mu))=-\mu \int_{\theta}^{\infty}\left(\left\{P, H_{1}\right\}\left(x^{s}(\sigma), \sigma ; \mu\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; \mu)\right) d \\
P\left(x^{u}(\theta)\right)-P(\Lambda(\theta, \mu))=-\mu \int_{\theta}^{-\infty}\left(\left\{P, H_{1}\right\}\left(x^{s}(\sigma), \sigma ; \mu\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; \mu)\right) d
\end{gathered}
$$

Up to here these computations are exact. Now we use:

- $H_{1}(x, \sigma ; \mu)=H_{1}(x, \sigma ; 0)+\mathcal{O}(\mu)$
- $\Lambda(\theta, \mu)=x^{*}+\mathcal{O}(\mu)$, then $P(\Lambda(\theta, \mu))=P\left(x^{*}\right)+D P\left(x^{*}\right) \mathcal{O}(\mu)=\mathcal{O}\left(\mu^{2}\right)$, because $D P\left(x^{*}\right)=0$. Analogously $\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu))=\left\{P, H_{1}\right\}\left(x^{*}\right)+\mathcal{O}(\mu)=\mathcal{O}(\mu)$.
- $\left\{P, H_{1}\right\}\left(x^{s}(\sigma, \mu), \sigma ; 0\right)=\left\{P, H_{1}\right\}\left(x_{h}(\sigma-\theta+v), \sigma ; 0\right)+\mathcal{O}(\mu)$ for $\sigma \geq \theta$, where x_{h} is the unperturbed homoclinic!
- $\left.\left\{P, H_{1}\right\}\left(x^{u}(\sigma, \mu), \sigma ; 0\right)=\left\{P, H_{1}\right\}\left(x_{h}(\sigma-\theta+v), \sigma ; 0\right)\right)+\mathcal{O}(\mu)$ for $\sigma \leq \theta$.

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Using the previous approximations in the expressions:

$$
\begin{gathered}
P\left(x^{s}(\theta)\right)-P(\Lambda(\theta, \mu))=-\mu \int_{\theta}^{\infty}\left(\left\{P, H_{1}\right\}\left(x^{s}(\sigma), \sigma ; 0\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; 0)\right) d \\
P\left(x^{u}(\theta)\right)-P(\Lambda(\theta, \mu))=-\mu \int_{\theta}^{-\infty}\left(\left\{P, H_{1}\right\}\left(x^{s}(\sigma), \sigma ; 0\right)-\left\{P, H_{1}\right\}(\Lambda(\sigma, \mu), \sigma ; 0)\right) d
\end{gathered}
$$

We obtain:

$$
\begin{aligned}
& P\left(x^{s}(\theta)\right)=-\mu \int_{\theta}^{\infty}\left\{P, H_{1}\right\}\left(x_{h}(\sigma-\theta+v), \sigma ; 0\right)+\mathcal{O}\left(\mu^{2}\right) \\
& P\left(x^{u}(\theta)\right)=\mu \int_{-\infty}^{\theta}\left\{P, H_{1}\right\}\left(x_{h}(\sigma-\theta+v), \sigma ; 0\right)+\mathcal{O}\left(\mu^{2}\right) \\
& P\left(x^{u}(\theta)\right)-P\left(x^{s}(\theta)\right)=\mu \int_{-\infty}^{+\infty}\left\{P, H_{1}\right\}\left(x_{h}(\sigma-\theta+v), \sigma ; 0\right)+\mathcal{O}\left(\mu^{2}\right) \\
& =\mu \int_{-\infty}^{+\infty}\left\{P, H_{1}\right\}\left(x_{h}(s+v), s+\theta ; 0\right)+\mathcal{O}\left(\mu^{2}\right)=\mu M(v, \theta)+\mathcal{O}\left(\mu^{2}\right)
\end{aligned}
$$

Proof of Theorem 1: Distance between the invariant manifolds of Λ_{μ}

Model $\dot{x}=J \nabla P(x, y)+\mu H_{1}(x, t ; \mu) . H_{1}$ can be T-periodic in time.

- Recall that the points $x^{u}(\theta), x^{s}(\theta) \in W^{u}\left(\Lambda_{\mu}\right) \cap N$
- We wanted to compute $\left\|x^{u}(\theta)-x^{s}(\theta)\right\|$
- Take the pendulum $P(q, p)=\frac{p^{2}}{2}+V(q)$
- We saw that $\left|P\left(x^{u}\right)-P\left(x^{s}\right)\right|=\left\|x^{u}-x^{5}\right\|\left\|\nabla P\left(q_{0}\right)\right\|+\mathcal{O}\left(\mu^{2}\right)$.
- We have seen that:

$$
\left|P\left(x^{u}\right)-P\left(x^{s}\right)\right|=\mu M(v, \theta)+\mathcal{O}\left(\mu^{2}\right)
$$

- Consequently:

$$
\left\|x^{u}-x^{s}\right\|=\frac{\mu}{\left\|\nabla P\left(q_{0}\right)\right\|} M(v, \theta)+\mathcal{O}\left(\mu^{2}\right)
$$

where $M(v, \theta)=\mathcal{M}(\theta-\omega v)=\frac{\partial}{\partial v} L(v, \theta)=\mathcal{L}^{\prime}(\theta-\omega v)$ is the Melnikov function and L the melnikov potential.

An example of fast forcing: The perturbed pendulum

 In our original model $\omega=\frac{1}{\sqrt{\varepsilon}}$. Let's do an examle.$$
H\left(p, q, \frac{t}{\varepsilon}\right)=\frac{p^{2}}{2}+(\cos q-1)+\mu(\cos q-1) \sin \frac{t}{\sqrt{\varepsilon}}
$$

- $\Lambda_{\mu}=\{(0,0)\}$ is a hyperbolic periodic orbit for this system. $\Lambda(\theta ; \mu)=(0,0)$ is the fixed point of the Poincaré map \mathcal{P}_{θ}.
- The Melnikov potential is:

$$
\begin{aligned}
L(v, \theta) & =4 \pi e^{-\frac{\pi}{2 \sqrt{\varepsilon}}}\left(\sin \left(v-\frac{\theta}{\sqrt{\varepsilon}}\right)\right) \\
P\left(z^{s}\right)-P\left(z^{u}\right) & =4 \pi e^{-\frac{\pi}{2 \sqrt{\varepsilon}}}\left(\sin \left(v-\frac{\theta}{\sqrt{\varepsilon}}\right)\right)+\mathcal{O}\left(\mu^{2}\right)
\end{aligned}
$$

We need $\mu=\mathcal{O}\left(e^{-\frac{\pi}{2 \sqrt{\varepsilon}}}\right)$ to make the error term smaller!

