1D dynamics, Lecture 3:

Polynomial-like maps vs pruned polynomial-like structure for real analytic maps

20 May 2024

Polynomial-like maps

One of the main ingredients in complex dynamics is the following:

Definition

Assume that U, U^{\prime} are open set in \mathbb{C}. Then $f: U \rightarrow U^{\prime}$ is a polynomial-like map if f is a complex analytic map which is branched covering map with a finite number of branch points. So

- f maps ∂U onto ∂U^{\prime} and maps U onto U^{\prime}.
- for each $y \in U^{\prime}$ there exists a neighbourhood V^{\prime} of y so that $f^{-1}\left(V^{\prime}\right)$ has finitely many component and on each component f is either a homeomorphism or locally of the form $z \mapsto z^{d}$.

For each such f one can definite its filled Julia set as

$$
K(f)=\left\{z \in U ; f^{n}(z) \in U \text { for all } n \geq 0\right\}
$$

If $K(f)$ may be connected or disconnected. (Draw pictures...)

Manifold structure for quadratic-like mappings

- Let $\mathcal{Q L}$ be the space of real quadratic-like mappings, $f: U \rightarrow U^{\prime}$ with $U \Subset U^{\prime}$.
- Let $\mathcal{C} \subset \mathcal{Q} \mathcal{L}$ denote the set for which $K(f)$ is connected.
- Hybrid class $=$ Top class + fixing multipliers at periodic attractors.

Theorem (Lyubich)

The hybrid class of $f \in \mathcal{C}$ is a connected, codimension-one, complex analytic submanifold of $\mathcal{Q L}$.
Moreover, topological conjugacy classes laminate \mathcal{C}.

Aim of this lecture

- In the next lecture I will try to explain the proof of the previous theorem, and also try to explain why the proof does not work in our setting.
- Nevertheless we would like to get a structure similar to that of a polynomial-like map.
- For this structure one can obtain the analogue of the previous result (but using a somewhat different approach in the proof).
- That is the purpose of today's talk.

Before discussing the analogue structure, let us explain the following figure, which will be an inspiration for what we will do.

1D dynamics. Lecture 3: pruned polynomial-like mappings

- Here some map quadratic map $f(z)=z^{2}+c$ with $c \in \mathbb{R}$ is considered
- its filled Julia set $K(f)=\left\{z \in \mathbb{C} ; \lim \sup _{n \rightarrow \infty}\left|f^{n}(z)\right| \notinfty\right\}$ is drawn.
- Consider the Riemann mapping ψ from $\overline{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \overline{\mathbb{C}} \backslash K(f)$ so that $\psi(\infty)=\infty$.
- What is drawn in the figure are ψ-images of
- circles $r e^{i \phi}, \phi \in[0,2 \pi], r \geq 1$ fixed (equipotential), and
- rays $z=r e^{i \phi}, r \geq 1$ in $\mathbb{C} \backslash \mathbb{D}$ (external ray).
- It turns out that $\psi^{-1} \circ f \circ \psi: \overline{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow \overline{\mathbb{C}} \backslash \overline{\mathbb{D}}$ is equal to $z \mapsto z^{2}$.
- So f maps equipotentials to equipotentials and external rays to external rays.

- More generally, given a polynomial f, there exists a way of constructing nice sets, i.e. sets P_{n} so that no point on the boundary is ever mapped into the interior of P_{n}.
- This construction uses external rays and equipotentials landing on periodic orbits, see Misha's lectures and blackboard. These curves come from the Böttcher coordinates near ∞. The partition elements are called Yoccoz puzzle pieces.

Aim of this lecture: do an analogous construction for real analytic maps (which are not globally defined). Issues to overcome:

- how to associate a filled Julia to a real analytic interval map?
- how to obtain a picture as before.

Pruned polynomial-like maps

Real analytic maps have a pruned-polynomial-like extension:

Theorem (Trevor Clark \& SvS)

Associated to $f: I \rightarrow I$ with only repelling periodic points,
\exists open neighbourhoods U, U^{\prime} of I in the complex plane and a finite union of curves Γ so that f has an extension $F: U \rightarrow U^{\prime}$ with

- $U \supset I, F(U)=U^{\prime}$ and $F(\partial U) \subset \partial U^{\prime} \cup \Gamma$;
- each component of Γ is a piecewise smooth arc in U^{\prime} connecting boundary points of U^{\prime};
- $F(\Gamma \cap U) \supset \Gamma$
- each component of $U^{\prime} \backslash(\Gamma \cup \mathbb{R})$ is a quasidisc.

- This theorem was proved in T. Clark and SvS, Conjugacy classes of real analytic one-dimensional maps are analytic connected manifolds, arXiv:2304.00883.
- In A. Avila, M. Lyubich and W. de Melo, Regular or stochastic dynamics in real analytic families of unimodal maps, Invent. Math. 154 (2003), 451-550 also gives a a complex extension for real analytic maps. However,
- their construction requires that there is only one critical point, and that this critical point is quadratic.
- the domain of their construction consists of a countable union of open domains, which together do not form a full neigbourhood of I.
Therefore their extension much less useful and much harder to work with.

What is the aim of this pruned polynomial-like structure?

- Even when f is entire (i.e. defined and holomorphic on the complex plane) we want to 'cut' or 'prune' all dynamics away from the domain that is unrelated to that on I.
- If f is merely real analytic, then the domain of the map is only a small neighbourhood of I. In particular, if the map f may not be holomorphic on a neighbourhood of $f^{-1}(I)$.
What is the benefit of this structure?
- Most techniques that work for quadratic-like maps can also be used in the setting of pruned polynomial-like maps.
- The domain of this pruned polynomial-like extension contains a full neighbourhood of I.
How to obtain this structure?
- Define a geometric object $I \subset K_{X} \subset \mathbb{C}$ which is full.
- Using the dynamics $f: \mathbb{C} \backslash f^{-1}\left(K_{X}\right) \rightarrow \mathbb{C} \backslash K_{X}$ define an external map $g: \partial \mathbb{D} \rightarrow \partial \mathbb{D}$ (which will have discontinuities);
- Use this to define the pruned polynomial-like extension.

How to obtain pruned polynomial-like maps

We want to construct a Markov structure in a neighbourhood of I.
To obtain this, we will consider the Julia set:

- Assume that we are in the amazing situation that $f: I \rightarrow I$ extends to a polynomial map $F: \mathbb{C} \rightarrow \mathbb{C}$
- Also assume that $F^{n}(z) \rightarrow \infty$ when $z \in \mathbb{R} \backslash /$ and all periodic orbits are repelling.
- Then the Julia set is equal to

$$
J(f)=\overline{\cup F^{-n}(I)}
$$

- What to do when $f: I \rightarrow I$ is real analytic? Prune!

Example:

- let $f(z)=(-c+1) z^{2}+c$, normalised so that $F_{c}(\pm 1)=1$ with $c=-0.2$.
- take two different intervals J containing c.
- consider the set $K_{X}(f)$ where $X=\partial J$ (defined on the next page).

(a)

Take

- (real) disjoint interval neighbourhoods $J_{1}, \ldots, J_{\nu^{\prime}} \subset I$ of the critical values $f\left(c_{1}\right), \ldots, f\left(c_{\nu}\right) \in I \subset \mathbb{R}$,
- let $J:=\cup J_{i}$ and
- Let J^{-1} be the union of the connected components of $\overline{f^{-1}(J) \backslash \mathbb{R}}$ containing a critical point.
Now consider the connected component K_{n} of

$$
\cup_{0 \leq i \leq n} f^{-i} J^{-1} \bigcup I
$$

containing I and let $K_{X}=\overline{\cup K_{n}}$.

1D dynamics. Lecture 3: pruned polynomial-like mappings

1D dynamics. Lecture 3: pruned polynomial-like mappings

Pruned Julia Set.

So the Julia set is 'cut' in preimages of the points

$$
X=\left(\partial f^{-1}(J) \backslash \mathbb{R}\right) \cup\{\text { periodic critical points }\}
$$

Next define the pruned Julia set:

$$
\begin{equation*}
K_{X}(f)=\text { closure of } \bigcup_{n=0}^{\infty} K_{n} \tag{1}
\end{equation*}
$$

Theorem

Assuming the intervals J are small enough,

- the resulting set K_{X} has no interior, is full and locally connected;
- $f\left(K_{X}\right) \subset K_{X}$ and $K_{X} \subset \Omega_{a}$;
- $f: I \rightarrow I$ has only repelling periodic points \Longrightarrow all periodic points on K_{X} are repelling;
- $f: I \rightarrow$ I has only hyperbolic periodic points \Longrightarrow all periodic points on K_{X} are hyperbolic, and the attracting ones are in I.

Step 1 in proof: External mapping

- Let $\psi: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K_{X}(f)$ be the Riemann mapping and let $\phi=\psi^{-1}$ (is multivalued on $\partial \mathbb{D}$).
- $g=\psi^{-1} \circ f \circ \psi: \mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}}$ is well-defined near $\partial \mathbb{D}$
- it extends to $\partial \mathbb{D}$ as an analytic map outside $\phi(X)$ and at each of these points g has a discontinuity.
- choose intervals $Y \subset J^{-1} \backslash \mathbb{R}$ containing X.
- in the quadratic case, $\phi(c)$ consists of four points in $\partial \mathbb{D} \backslash \phi(X)$, and their forward orbits don't enter $\hat{Y}:=\phi(Y)$.
- Choose Y so that $\partial \hat{Y}$ are pre-periodic points of g.

There exists a theorem by Mañé which gives expansion:

Theorem

Let f be a C^{2} map on the circle (or an interval) without parabolic periodic points. Then for each neighbourhood U of the set of critical points of f there exists $C>0$ and $\lambda>1$ so that if

$$
z \in\left\{x ; f^{i}(x) \notin U \text { for all } 0 \leq i \leq n-1\right\}
$$

then

$$
\left|D f^{n}(z)\right| \geq C \lambda^{n}
$$

- By the previous theorem \exists an adapted metric on $\partial \mathbb{D} \backslash \hat{Y}$ so that g becomes an expanding map of the circle (if f has no periodic attractors).
- Choose forward invariant rays through each point of $\partial \hat{Y}$.

graph of $f: I \rightarrow I$

On the next picture we assume that \hat{E}_{1}, \hat{E}_{2} and \hat{E}_{3}, \hat{E}_{4} touch.

External mapping: a Markov structure.

- By the previous theorem \exists an adapted metric on $\partial \mathbb{D} \backslash \hat{Y}$ so that g becomes an expanding map of the circle (if f has no periodic attractors).
- Choose forward invariant rays through each point of $\partial \hat{Y}$.
- Using this we obtain sets U and U^{\prime} as shown:

Pruned polynomial-like mappings

Theorem (Trevor Clark \& SvS)

Associated to $f: I \rightarrow I$ with only repelling periodic points, \exists neighbourhoods U, U^{\prime} of I in the complex plane and a finite union of curves Γ so that

- $f(U)=U^{\prime}$ and $f(\partial U) \subset \partial U^{\prime} \cup \Gamma$;
- each component of Γ is a piecewise smooth arc in U^{\prime} connecting boundary points of U^{\prime};
- $f(\Gamma \cap U) \supset \Gamma$
- each component of $U^{\prime} \backslash(\Gamma \cup \mathbb{R})$ is a quasidisc.

Where you prune, can be encoded in a finite set $Q(F) \subset \partial \mathbb{D}$.

- There exists a similar result if there exists periodic attractors or parabolic periodic points.
- Giving this structure we can start using complex dynamics in the next lecture.
- In the next lecture will give a sketch of the following theorem, but we will assume in this sketch a deep result which will discussed in the final lecture.

Assume that all periodic points of f are hyperbolic.

- $\zeta(f)=$ maximal number of critical points in the basins of periodic attractors of f with pairwise disjoint infinite orbits.

Theorem B (Trevor Clark \& SvS)

(1) \mathcal{T}_{f}^{ν} is a real analytic manifold.
(2) $\mathcal{T}_{f}^{\nu} \cap \mathcal{A}_{a}^{\nu}$ is a real analytic Banach manifold.
(3) The codimension of \mathcal{T}_{f}^{ν} in the space of all real analytic functions is equal to $\nu-\zeta(f)$.

Moreover, \mathcal{T}_{f}^{ν} is path connected.

If there are periodic attractors without critical points in its basin we have to adjust this dimension.

