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Purpose of today’s talk:

- Survey some the theorems in 1D, including a new theorem about
the density of hyperbolicity in one parameter families.

In each of the remaining lectures, I will introduce one new tool and
then sketch how this tool is used to prove the above theorems.
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1D maps with good behaviour

1D maps can have simple and also very complicated dynamics.

Simple HYPERBOLIC behaviour for

Lebesgue almost all points x converge to the orbit of a
hyperbolic periodic point p, so that |Df n(p)| 6= 1.

Examples:
- f (x) = 2x(1− x) (attracting fixed point) or

- f (x) = ax(1− x) with a = 3.8284 + ε (period three attractor).

Statistically simple behaviour

Lebesgue almost all points x converge to a union of intervals
K and there exists an absolutely continuous invariant measure
on K so that for a.e. x,

∑n
i=0 δf i (x) → µ in the weak topology.

Example:

- f (x) = 4x(1− x)

1D dynamics. Lecture 1: density of hyperbolicity revisited



1D maps with bad behaviour

Example 1
− 1 ∃f with a f -forward invariant Cantor set Λ which is a wild
attractor. That is {x ; f n(x)→ Λ}

has full Lebesgue measure;

but is topologically meagre.

Example 2
− 2 ∃f which has strange resp. no physical measures.

(1/n)
∑n

i=0 δf i (x) converges to δp for a.e. x , where p is a
repelling periodic point.

or, alternatively ∃f , s.t. for a.e. x ,
∑n

i=0 δf i (x) does not have
a limit.

1Bruin, Keller, Nowicki, SvS, Annals 1996
2Hofbauer, Keller 1990
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Main Purpose of this talk: to discuss theorems which state that
most maps are hyperbolic:

Definition f is hyperbolic ⇐⇒ non-wandering set

Ω = Ω1 ∪ Ω2: Ω1 exp. expanding, Ω2 exp contracting (finite)

⇐⇒ a.e. x tends to some (hyperbolic) attracting periodic point ⇐⇒

all critical points are in basins of hyperbolic periodic attractors and

all periodic orbits are hyperbolic.

Here a critical point is a point x so that Df (x) = 0.

For people in complex dynamics or if Sf < 0, they usually
omit in the last sentence the part that all periodic points are
hyperbolic because this follows from the first part.

General interval maps, may have periodic attractors that do
not have critical points in their basin.
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Open problems in dynamics

The following questions have been open for many years:

Closing Lemma: Let x be a recurrent point of f . Is it
possible to approximate f in the C 2 topology by a
diffeomorphism for which x is periodic?
In real dimension 1 the answer is yes: even in the C∞

topology.

Density of hyperbolicity: Let M be a manifold with
dim(M) ≥ 2 and let f0 be a C k diffeomorphism on M.
- Can one approximate f by a hyperbolic diffeomorphism?
Since the late 1960’s it is known that the answer is: NO.
In real dimension 1 the answer is yes: even in the C∞

topology.

Palis conjecture: By a diffeo with finite number of
attractors? NOT KNOWN!
In real dimension 1 only a partial solution known.
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Density of hyperbolicity is open for complex quadratic
maps

Fatou posed the analogous conjecture for maps of the interval or
on the Riemann sphere.

Conjecture (Fatou 1920)

Let f : C→ C be a polynomial. Then there exists a polynomial g

of the same degree and

whose coefficients are arbitrarily close to those of f ,

for which g is hyperbolic.

Still wide open!!!
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Density of hyperbolicity in real dimension 1

As mentioned, the Fatou conjecture in C is still wide open.

For real dimension = 1, density of hyperbolicity was part of
Smale’s list of questions for the 21st century.

Is was proved about 17-27 years ago:

Theorem (Kozlovski, Shen and SvS, Annals 2007a)

Within the space of C k interval maps (k ∈ N or k = ω),
hyperbolic maps are dense and the C k closing lemma holds.

Note: this was proved before for z2 + c , c ∈ R, or ax(1− x), a ∈ (0, 4],
by
- Graczyk & Swiatek, Annals of Math 1997 and, independently, by
- Lyubich, Acta Math 1997.
- In the quadratic case a miracle occurs: 2/2=1.

- Our proof necessarily follows a completely different approach.
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Density hyperbolicity: local vs global

Pugh’s C 1 closing lemma uses local perturbations to make a
recurrent point periodic for a C 1 nearby diffeo: pick a ‘closest’
return time and then to do a local perturbation.

This ‘local’ approach was also attempted (many times) in the
one-dimensional case. In 1971 Jacobson: C 1 closing lemma.
In 2004, Shen: C 2 closing lemma for maps satisfying
‘bounded geometry’. Attempts to generalise this failed.

Palis conjecture:

There are many people who have worked on the Palis
conjecture in dim ≥ 2 (in C 1 topology): Yoccoz, Palis,
Pujals. Samborino, Crovisier, Bonatti, Matheus, Avila, etc...

Counter example (to the original Palis conjecture):
Berger.

dim = 1: results by Avila, Lyubich, Shen, Bruin, SvS but only
in the unicritical case.
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Global approach in the quadratic 1D case

Use global perturbations and rigidity.
In the case of real quadratic maps, this relies on a trivial
lemma plus a deeper result about qs-rigidity:

Lemma

Consider fc(z) = z2 + c with c is real. If fc is not hyperbolic and
cannot be approximated by a hyperbolic quadratic map, then there
exists a maximal interval [c0, c1] 3 c with c0 6= c1 so that all maps
ft with t ∈ [c0, c1] are topologically conjugate.

Theorem (quasisymmetric rigidity)

fc0 , fc1 are quasisymmetrically conjugate. (Defn: see blackboard)

Corollary (Using Measurable Riemann Mapping Theorem)

There exists (c ′0, c
′
1) ⊃ [c0, c1] so that ft is topologically conjugate

to ft for each t ∈ (c ′0, c
′
1).
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Global approach in the almost general polynomial 1D case

If ALL critical points of a polynomial are real:

Theorem (quasisymmetric rigidity: Kozlovski, Shen, SvS, Annals
2007a)

Assume that f , g are real analytic interval maps which are
topologically conjugate (and the order of critical points are the
same). Then they are quasisymmetrically conjugate.

Main tool: enhanced nest to obtain control of geometry of
puzzle pieces.3

Within space of SUCH polynomials we have
qs rigidity =⇒ rigidity.

That is, f , g qs conjugate polynomials =⇒ f , g affinely
conjugate or ∃ periodic attractors.

3KSvS, Annals 2007a. The enhanced is useful for many applications, also to
complex dynamical systems, see Kozlovski, SvS, 2009. For an exposition and
some further results, see Clark, Drach, SvS, Arnold J. 2022.
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In the setting of polynomials with only real critical points,
by induction on the number of critical points
rigidity =⇒ density of hyperbolicity.

Indeed:

First induction step: 6 ∃ open set U ⊂ Pd without an critical
relations or per. attr., because otherwise all g ∈ U are
topologically conjugate, which contradicts rigidity.

Next induction step: Now consider a subspace of polynomials
with one (or several) critical relation, and repeat the
argument.

In each step it is crucial that one has rigidity, not just qs
rigidity.

This techniques breaks down if
- you have a polynomial with non-real critical points,
- you have a transcendental or not globally defined map.
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Approach in the general polynomial 1D case

For a general real polynomial, or a real analytic interval map
one can combine local perturbations with global rigidity.

Theorem (Density of hyperbolicity: Kozlovski, Shen, SvS 2007b)

Real hyperbolic polynomials of degree d are dense in the
space of all polyonomials of degree d;

Hyperbolicity is dense in the space of C∞ interval maps (in
the C∞-topology).

One step in the proof goes as follows:

Fix big ball s.t. f : B → f (B) is polynomial-like of degree

approximate f by a suitable smooth hyperbolic map g (this is
the main step).

approximate g by a holomorphic g̃ of degree d ′ >> d ;

g̃ : B → g̃(B) is qc conjugate to a nearby polynomial P of
degree d (straightening theorem);
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Why do we want to do better than this?

The techniques in that paper do not work for

specific families of maps (which you cannot choose);

space of transcendental maps.
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The setting for a new density theorem

Let Aν be the space of real analytic maps of I with ν critical
points c1 < · · · < cν with degrees `1, . . . , `ν .

What is the itinerary of a point x? As before, let
c0 < c1 < · · · < cν < cν+1 be the critical points of f : I → I ,
where c0, cν+1 are the left and right endpoint of I .
Associate to c the infinite symbolc sequence

an ∈ {c0, I1, c1, I2, . . . , Iν , cν+1}N

where

an =

{
Ii if f n(x) ∈ (ci , ci+1),
ci if f n(x) = ci .
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A new density theorem

Definition: a family (fλ)λ∈J is called trivial if there exists a
non-hyperbolic critical point c , so that one of the following hold:

(a) J 3 λ 7→ itinerary of c is constant;

(b) ∃ n and open J ′ ⊂ J s.t. f nλ has a parabolic fixed point
∀λ ∈ J ′.

If, for example, Sfλ < 0 then

(b’) can be replaced by ∃ n s.t. f nλ has a parabolic fixed point
∀λ ∈ J.

Theorem (Density of hyperbolicity within families, vS2024)

Let (fλ)λ∈J be a real analytic one parameter family of real analytic
maps which is non-trivial.
Then the set of hyperbolic parameters H is dense in J.
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Another version of the new density of hyperbolicity
theorem

Theorem (2nd version Density of hyperbolicity within families,
vS2024)

Let (fλ)λ∈J be a real analytic one parameter family of real analytic
maps.
Assume that no critical point has the same itinerary for all λ ∈ J.
Then the set of semi-hyperbolic parameters H is dense in J.

Definition f is called semi-hyperbolic if all critical points are in
the basin of a periodic attractor (possibly parabolic). Here we only
consider the real critical points.
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Often the assumption of non-triviality is easy to check:
Application of the Main Theorem
Take cubic family fA,b(z) = z3 − 3Az + b, A > 0, b ∈ R,with
critical points ±

√
A.

Figure below (taken from a paper by Milnor) shows bifurcation
diagram for (A, b) ∈ [−0.4, 1.1]× [−1, 1]. Within any real
analytic curve, one has density of hyperbolicity.8 Experimental Mathematics, Vol. 1 (1992), No. 1

FIGURE 3.

Remark.

FIGURE 4.

FIGURE 5.

Definition.
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One page sketch of proof

hyperbolicity is not dense

⇓ Theorem A

∃J ′ ⊂ J and a critical point c with constant kneading invariant

i.e. ”locally trivial’

⇓ Theorem B

globally trivial or parabolic periodic point appears

⇓ Theorem D

Statement of New Theorem
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First ingredient in the proof:
non-density of hyperbolicity =⇒ family is locally trivial

Theorem A (non-density of hyperbolicty =⇒ locally trivial)

Take a one parameter family fλ, λ ∈ J of real analytic maps in Aν .
Assume that J is an interval of parameters so that

λ ∈ J =⇒ fλ is non-hyperbolic

Then ∃ an interval J ′ ⊂ J and i so that the the itinerary of the
critical point ci (λ) is the same for all λ.
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Second ingredient in the proof:
family is locally trivial =⇒ globally trivial

Case 1: critical point has finite orbit (trivial case)

Theorem

Suppose that some critical point ci of fλ is periodic or pre-periodic
∀λ ∈ J ′, where J ′ is an open subinterval of J. Then it is periodic
for all λ ∈ J.

Proof is easy: Suppose that for some q > r ≥ 0 one has
f qλ (ci ) = f rλ (ci ) for all λ ∈ J ′. Then this equation holds for all λ
(by real analyticity).

Note that this argument does not use that the periodic point on
which ci lands is hyperbolic. In fact, it shows that the periodic
point f rλ (ci ) must persist for all λ ∈ J. (Corollary: no parabolic
saddle-node bifurcation can occur.)
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Second ingredient in the proof:
family is locally trivial =⇒ globally trivial

Case 2: critical point is infinite

Theorem B

Suppose that there exists J ′ ⊂ J so that

∀λ ∈ J ′ the itinerary of ci is the same;

ω(ci (λ)) does not contain parabolic periodic points for any
λ ∈ J.

Then the itinerary of ci is the same for all λ ∈ J.

Case 2 is quite a bit more subtle that Case 1. Proof uses that
certain infinite dimensional manifolds are analytic. To discuss this
we need to a digression.
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Tool in Second ingredient: T νf is an analytic manifold.

- T νf = {g ∈ Aν ; g topologically conjugate to f and
all periodic points of g are hyperbolic }.

- ζ(f ) = maximal number of critical points in the basins of
periodic attractors of f with pairwise disjoint infinite orbits.

Theorem B (Trevor Clark & SvS)

1 T νf is a real analytic manifold.

2 T νf ∩ A
ν
a is a real analytic Banach manifold.

3 The codimension of T νf in the space of all real analytic
functions is equal to ν − ζ(f ).

Moreover, T νf is path connected.

If there are periodic attractors without critical points in its basin
we have to adjust this dimension.
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A variant of the previous theorem that is needed in the
Second ingredient: T νf (ci1, . . . , cis) is an analytic manifold

In the conclusion of Theorem A we only obtained that the itinerary
of only some of the critical points are fixed. So we need the
following variant:

Pick s real citical points ci1 , . . . , cis , s.t.
c ∈ ω(cij ) =⇒ c = cik for some k .

Assume all periodic points in ωf (cij ) are hyperbolic.

Define

T νf (ci1 , . . . , cis ) = {g ∈ Aν s.t.ig (cij ) = if (cij ), j = 1, . . . , s and

all periodic points in ωg (ci ) are hyperbolic }.

Theorem C

T νf (ci1 , . . . , cis ) is a real analytic manifold.
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Third ingredient in the proof:
the real analytic manifold is not real analytic at its
boundary

Theorem D (Avoiding parabolic periodic points)

Assume that there is a closed interval J ′ ⊂ J and a critical point ci
so that the itinerary of ci ,λ is the same for all λ ∈ J ′. Then the
following holds: if for some λ0 ∈ J ′ there exists a periodic point in
ω(ci ,λ0) which is parabolic, then this periodic point is parabolic for
each λ ∈ J ′.

In other words:
The above manifold is not real analytic at its boundary.
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Plan of remaining lectures

In the remaining lectures I will expand on the proof. In the process
I will discuss some of the Main Tools in 1D.

1 Survey on various theorems in 1D, including a new theorem
about the density of hyperbolicity in one parameter families.

2 Real tools: Absence of wandering intervals and the first step
in the proof of the new theorem (Theorem A).

3 Complex tools, part I: Polynomial-like maps, puzzle pieces,
pruned polynomial-like structure.

4 Complex tools, part II: Measurable Riemann Mapping
Theorem, mating and the conjugacy class of a real analytic
map is a real analytic manifold.

5 Complex tools, part III: Quasi-symmetric rigidity and the
enhanced nest.
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Python code for period doubling diagram

Exercise: improve the following code (which I found on the
internet).

import numpy as np

import matplotlib.pyplot as plt

Many =50000

x = np.random.rand(Many)

r = np.linspace(0,4.0, num= Many)

for i in range(1, 54):

x_a = 1-x

Data= np.multiply(x,r)

Data= np.multiply(Data, x_a)

x = Data

plt.title(r’Logst: $x_{n+1} = a x_n (1-x_n).$ n = ’+ str(i) )

plt.ylabel(’x-Random number’)

plt.xlabel(’r-Rate’)

plt.scatter(r, Data, s=0.1, c=’k’)

plt.show()

plt.savefig(str(i) + " Logistic Map.png", dpi = 300)

plt.clf()
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