Till innehåll på sidan

Reiner Werner: Quantum correlations - how to prove a negative from finitely many observations

Reiner Werner, Leibniz Universität, Hannover

Time: Wed 2010-09-29 16.00 - 17.00

Location: Room 3721, Department of Mathematics, KTH, Lindstedtsvägen 25, 7th floor

One of the fundamental questions of quantum theory is whether the
probabilities, and specifically the correlations predicted by this theory
could alternatively be modeled by a classical probabilistic theory of yet
hidden variables. Whereas complementarity tells us that in quantum theory
there are many measurements which cannot be carried out jointly, the
possibility remains open that by being more inventive, perhaps coming up
with measurements not described by current quantum theory, a classical
description might be restored. Quantum probabilities could then be
understood as resulting from the ignorance of a finer classical microscopic
description, and our technical inability to access this level

Indeed, as long as we look only at the simplest scenario of systems being
prepared and measured on, such extensions are always possible. However, the
situation changes dramatically, if we consider also correlations between
distant, non-interacting parties. In this case a finite experiment,
measuring a certain set of four correlations, combined with a causality
condition, rules out all classical descriptions. The argument given in
rudimentary form by Einstein-Podolski and Rosen in 1935, and much refined by
Bell in the 1960s, will be presented in an elementary way. Moreover, some
general properties of Bell's correlation inequalities, which mark the
boundary of the classically accessible region, will be explained.

Quantum mechanics also implies linear constraints on correlations, the first
of which was established by Tsirelson. The related inequalities can be used
to verify the extremality of correlations, which is a useful property for
quantum cryptography: if such correlations are found between two parties,
quantum mechanics implies that nobody in another part of the world (i.e.,
no eavesdropper) could be correlated with the observed bits. These could
then be used for generating an absolutely private cryptographic key. Thus,
once again, a sweeping negative can be concluded from observed correlations.

In the endeavour of verifying the extremality of quantum correlations the
possibility of a curious gap arises: namely, it is possible that some
correlations allowed by algebraic quantum theory, would be impossible to
generate, even approximately, by finite dimensional systems. The negative
statement implied by the possible observation of such correlations would be
far reaching and very strange: namely, that the experiment is not described
by quantum field theory and related models, which all have good
approximations in terms of finite systems. One may be inclined to conjecture
that such a gap does not exist. Indeed, this conjecture turns out to be
equivalent to a famous an open conjecture of Alain Connes from the 1970s and
to a number of other undecided finite approximation properties, some of
which will be described in the talk.

This talk is given in connection with the program "Quantum Information
Theory" running at the Mittag-Leffler Institute from September to

Coffee and tea served at 15.30.

Titel Datum
Philip Maini: Modelling collective cell motion 2018‑09‑26
Leslie Greengard: Inverse problems in acoustic scattering and cryo-electron microscopy 2018‑04‑11
James Norris: Scaling limits for planar aggregation with subcritical fluctuations 2018‑03‑21
Sofia Olhede: Network Data Analysis 2018‑02‑07
Viviane Baladi: Analytical tools for dynamics with singularities, including Sinai billiards 2017‑11‑29
Gerard van der Geer 2017‑09‑27
János Pach 2017‑06‑07
Alicia Dickenstein 2017‑04‑05
Arno Kuijlaars: Universality in random matrix theory 2017‑02‑25
Karen Smith 2016‑12‑07
Jeff Steif: Noise Sensitivity of Boolean Functions and Critical Percolation 2016‑10‑28
Martin Hairer: Taming infinities. 2016‑09‑29
Mattias Jonsson: Complex, tropical and non-Archimedean geometry 2016‑06‑01
Yulij Ilyashenko: Towards the global bifurcation theory on the plane 2016‑04‑27
Volodymyr Mazorchuk: (Higher) representation theory 2016‑03‑09
Tobias Ekholm: Knot contact homology, Chern-Simons, and topological strings 2016‑02‑10
Dmitry Khavinson: "Between two truths of the real domain, the easiest and shortest path quite often passes through the complex domain." P. Painleve, 1900. A variation on the theme of analytic continua 2015‑12‑12
Kathryn Hess: A calculus for knot theory 2015‑11‑06
Gregory F. Lawler: Self-avoiding motion 2015‑10‑09
Claudio Procesi: Analytic and combinatorial aspects of the Non Linear Schroedinger equation (NLS) on a torus 2015‑05‑27
Alexander Razborov: Continuous Combinatorics 2015‑03‑18
Christiane Tretter: Operator theory and applications: a successful interplay 2015‑02‑04
Michael Rathjen: Is Cantor’s continuum problem still open? 2014‑10‑15
Irene Fonseca: Variational Methods in Materials and Image Processing 2014‑09‑03
Ib Madsen: Moduli Spaces and Topology 2014‑06‑11
Mikko Salo: Can one hear the shape of a space? 2014‑03‑27
Svante Janson: Random Graphs 2014‑01‑29
Mireille Bousquet-Mélou: Self-avoiding walks 2014‑05‑07
Kristian Seip: Analysis on polydiscs 2013‑11‑27
Bernd Sturmfels: The Euclidean Distance Degree 2013‑10‑09
Christoph Thiele: L^p theory for outer measures and applications 2013‑09‑25
Antti Kupiainen: Critical Multiplicative Chaos 2013‑05‑15
Günther Uhlmann: Cloaking: Science Meets Science Fiction 2013‑04‑24
Anatoliy Fomenko: Topological classification of Hamiltonian equations with symmetries. Application to physics and mechanics 2013‑02‑27
Jan-Erik Roos: Classical Lie algebras contra infinite-dimensional positively graded Lie algebras 2013‑02‑06
Hendrik Lenstra: Escher and the Droste effect 2012‑12‑12
Bo Berndtsson: Complex Brunn-Minkowski theory 2012‑11‑21
Martin Aigner: From Irrational Numbers to Perfect Matchings: 100 Years of Markov’s Uniqueness Problem 2012‑10‑10
Vladimir Rokhlin: Accurate Randomized Algorithms of Numerical Analysis 2012‑05‑19
Martin R. Bridson: Discrete groups: A story of geometry, complexity, and imposters 2012‑04‑11
Mats Gyllenberg: Rock, scissors, paper — what a children's game can tell us about evolution 2012‑03‑14
Persi Diaconis: Who Needs Positivity? 2012‑02‑10
Wendelin Werner: Random surfaces, random geometries 2011‑12‑14
Ragni Piene: The problematic art of counting 2011‑11‑16
Günter M. Ziegler: On some partition problems and their configuration spaces 2011‑10‑12
Carles Broto: Local aspects of groups and loop spaces 2011‑05‑11
Bernd Sturmfels: Quartic Curves and their Bitangents 2011‑02‑02
Torsten Ekedahl: The Sato-Tate conjecture 2010‑11‑03
Jesper Grodal: Finite loop spaces 2010‑11‑10
Amol Sasane: An analogue of Serre’s Conjecture and Control Theory 2010‑10‑13
Reiner Werner: Quantum correlations - how to prove a negative from finitely many observations 2010‑09‑29
Warwick Tucker: Validated Numerics - a short introduction to rigorous computations 2010‑09‑22
Idun Reiten: Cluster categories and cluster algebras 2010‑09‑01
Stefano Demichelis: Use and misuse of mathematics in economic theory 2010‑05‑26
Gregory G. Smith: Old and new perspectives on Hilbert functions 2010‑04‑14
Tony Geramita: Sums of Squares: Evolution of an Idea. 2010‑03‑31
Jens Hoppe: Non-commutative curvature and classical geometry 2010‑03‑24
Margaret Beck: Understanding metastability using invariant manifolds 2010‑03‑03
Jan-Erik Björk: Glimpses from work by Carleman 2010‑02‑10
Sandra Di Rocco: Interaction between Convex and Algebraic Geometry 2009‑12‑16
Alexander Gorodnik: Arithmetic Geometry and Dynamical Systems 2009‑11‑18
Laurent Bartholdi: Insanely twisted rabbits 2009‑11‑18
Nils Dencker: The spectral instability of differential operators 2009‑11‑04
Peter Jagers: Extinction: how often, how soon, and in what way? 2009‑10‑21
Norbert Peyerimhoff: Expander graphs — some background and new examples 2009‑10‑07
Saharon Shelah: Hilbert's First Problem and the number four 2009‑09‑23
Jürg Kramer: Irrationality of √2 and Arakelov Geometry 2009‑09‑09