Till innehåll på sidan

Gregory G. Smith: Old and new perspectives on Hilbert functions

Time: Wed 2010-04-14 16.00

Location: KTH, Matematik, seminarierum 3721, tea is served at 3:30 pm in the lunch room

Hilbert functions are fundamental invariants in algebra geometry and commutative algebra. After recalling the basic definitions and motivating examples, we will discuss Macaulay’s characterization for the collection of all Hilbert functions. We’ll then contrast this with a newer viewpoint and look at potential applications.

Kollokvier 2010

Titel Datum
Torsten Ekedahl: The Sato-Tate conjecture 2010‑11‑03
Jesper Grodal: Finite loop spaces 2010‑11‑10
Amol Sasane: An analogue of Serre’s Conjecture and Control Theory 2010‑10‑13
Reiner Werner: Quantum correlations - how to prove a negative from finitely many observations 2010‑09‑29
Warwick Tucker: Validated Numerics - a short introduction to rigorous computations 2010‑09‑22
Idun Reiten: Cluster categories and cluster algebras 2010‑09‑01
Stefano Demichelis: Use and misuse of mathematics in economic theory 2010‑05‑26
Gregory G. Smith: Old and new perspectives on Hilbert functions 2010‑04‑14
Tony Geramita: Sums of Squares: Evolution of an Idea. 2010‑03‑31
Jens Hoppe: Non-commutative curvature and classical geometry 2010‑03‑24
Margaret Beck: Understanding metastability using invariant manifolds 2010‑03‑03
Jan-Erik Björk: Glimpses from work by Carleman 2010‑02‑10