Sid Resnick: Exploring Dependence in Multivariate Heavy Tailed Data

Tid: Må 2019-09-16 kl 15.15

Föreläsare: Sid Resnick, Cornell University

Plats: Room F11, Lindstedtsvägen 22

Abstract: We review a framework for considering multivariate data that could plausibly come from a multivariate power law. The framework is flexible enough to allow for multiple (even infinite) heavy tail regimes depending on the choice of scaling and the definition of an extreme region. We use the framework to explore extremal dependence between components using both graphical and analytical means. An example using market returns is given for what we call "strong dependence" and an exploratory graph technique can highlight the most dependent components.

(Joint seminar with Mathematical Statistics)

Innehållsansvarig:webmaster@math.kth.se
Tillhör: Institutionen för matematik
Senast ändrad: 2019-09-09