Klaus Kröncke: Stability of ALE Ricci-flat manifolds under Ricci flow

Tid: To 2019-09-12 kl 11.00 - 12.00

Föreläsare: Klaus Kröncke - Universität Hamburg

Plats: Seminar Hall Kuskvillan, Institut Mittag-Leffler

Abstract

We prove that if an ALE Ricci-flat manifold \((M,g)\) is linearly stable and integrable, it is (\(L^2-\))dynamically stable under Ricci flow, i.e. any Ricci flow starting (\(L^2\cap L^{\infty}-\))close to g exists for all time and converges modulo diffeomorphism to an ALE Ricci-flat metric close to g. This is joint work with Alix Deruelle. 

Innehållsansvarig:webmaster@math.kth.se
Tillhör: Institutionen för matematik
Senast ändrad: 2019-09-11