Ari Laptev: Weyl type asymptotics and bounds for the eigenvalues of functional-difference operators for mirror curves

Tid: On 2019-05-15 kl 13.15 - 14.15

Föreläsare: Ari Laptev (Imperial College London)

Plats: Room F11, KTH

Abstract:
We describe some spectral properties of functional-difference operators related to mirror curves of special del Pezzo Calabi-Yau threefolds. Using the coherent state transform we find Weyl's type asymptotics for the Riesz means of its eigenvalues. We also consider a version of the Darboux transform that is related to creation and annihilation operators for standard Schrödinger operators.

Innehållsansvarig:webmaster@math.kth.se
Tillhör: Institutionen för matematik
Senast ändrad: 2019-05-10